Q.
Let f(x)=3(x2−2)3+4,x∈R. Then which of the following statements are true ? P:x=0 is a point of local minima of fQ:x=2 is a point of inflection of fR : f ' is increasing for x>2
f(x)=81⋅3(x2−2)3 f′(x)=81⋅3(x2−2)3⋅ln3⋅3(x2−2)2⋅2x =(81×6)3(x2−2)3×(x2−2)2ln3 f′(x)=k(486⋅ln3)g(x)3(x2−2)3x(x2−2)2 g′(x)=3(x2−2)3(x2−2)2+x⋅3(x2−2)3⋅4x⋅(x2−2) +x⋅(x2−2)2⋅3(x2−2)3ln3⋅3(x2−2)2⋅2x =3(x2−2)3(x2−2)[x2−2+4x2+6x2ln3(x2−2)3] g′(x)=3(x2−2)3(x2−2)[5x2−2+6x2ln3(x2−2)3] f′′(x)=k⋅g′(x) f′′(2)=0,f′′(2+>0,f′(2)<0 x−=2 is point of inflection f′′(x)>0 for x>2 so f′(x) is increasing