x→0limx3)α(1+x+2!x2+3!x3+…)+β(1−x+2!x2−3!x3+…)+γ(x−3!x3+…)
constant terms should be zero ⇒a+β=0
coeff of x should be zero ⇒α−β+γ=0
coeff of x2 should be zero x→0limx3x3(3!α−3!β−3!γ)+x4(3!α−3!β−3!γ)=32 ⇒2α+2β=0 6α−6β−6γ=2/3 ⇒α=1,β=−1,γ=−2