Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S= 4,6,9 and T= 9,10,11, ldots, 1000 . If A = a 1+ a 2+ ldots+ a k: k ∈ N , a 1, a 2., .a3, ldots, ak ∈ S then the sum of all the elements in the set T - A is equal to
Q. Let
S
=
{
4
,
6
,
9
}
and
T
=
{
9
,
10
,
11
,
…
, 1000 . If
A
=
{
a
1
+
a
2
+
…
+
a
k
:
k
∈
N
,
a
1
,
a
2
,
a
3
,
…
,
a
k
∈
S
}
, then the sum of all the elements in the set
T
−
A
is equal to
2125
1
JEE Main
JEE Main 2022
Sets
Report Error
Answer:
11
Solution:
S
=
{
4
,
6
,
9
}
T
=
{
9
,
10
,
11
…
.1000
}
A
{
a
1
+
a
2
+
…
..
+
a
k
:
K
∈
N
}
&
a
i
∈
S
Here by the definition of set 'A'
A
=
{
a
:
a
=
4
x
+
6
y
+
9
z
}
Except the element 11, every element of set
T
is of the form
4
x
+
6
y
+
9
z
for some
x
,
y
,
z
∈
W
∴
T
−
A
=
{
11
}