KCET 2021 Physics Questions with Answers Key Solutions

Solution:

$\phi= LI$ or $\phi= MI$
$L =\frac{\phi}{ I } $ or $ M =\frac{\phi}{ I }$

Solution:

$X_{L}=X_{C} $
Hence, the resultant voltage across $L$ and $C$ is $0$.
$Z = R$
$I =\frac{ V }{ Z }=\frac{ V }{ R }$
$=\frac{90}{45}=2 A$

Solution:

$k \to \frac{1}{C}$

Solution:

$\frac{ Q ^{2}}{2 C }=\frac{ LI ^{2}}{2}$
$\frac{ Q ^{2}}{2 \times 2.7 \times 10^{-6}} =\frac{3 \times 10^{-3} \times 4^{2}}{2}$
$Q ^{2}=12 \times 10^{-3} \times 2.7 \times 10^{-6}$
$=32.4 \times 10^{-9}$
$Q =18 \times 10^{-5} C$

Solution:

$c =\frac{ E _{0}}{ B _{0}}$
$B _{0}=\frac{ E _{0}}{ c }$
$=\frac{120}{3 \times 10^{8}}=400\, nT$
$k =\frac{2 \pi}{\lambda}=\frac{2 \times 3.14}{6}$
$k \neq 2.1 \,rad \,m ^{-1}$

Solution:

Charges moving in a circular orbit undergo centripetal acceleration hence emit em waves. Or when electron jumps from one higher stationary orbit to another lower stationary orbit emits em radiation.

Solution:

Refraction takes because of change in speed of light when it moves from one medium to another

Solution:

$n _{ w }=\frac{4}{3} \,\,\, n _{ g }=\frac{3}{2}$
$f _{ a }\left( n _{ g }-1\right)= f _{ w }\left(\frac{ n _{ g }}{ n _{ w }}-1\right)$
$ \frac{ f _{ w }}{ f _{ a }}=\frac{ n _{ g }-1}{\frac{ n _{ g }}{ n _{ w }}-1}=\frac{\frac{3}{2}-1}{\frac{\frac{3}{2}}{\frac{4}{3}}-1} $
$=\frac{\frac{3-2}{2}}{\frac{9}{8}-1}=\frac{\frac{1}{2}}{\frac{9-8}{8}}=\frac{\frac{1}{2}}{\frac{1}{8}}=\frac{8}{2}$
$ \therefore \frac{ f _{ w }}{ f _{ a }}=\frac{4}{1} $

Solution:

$f _{1}=+ f _{1}$
$f _{2}=+ f _{2}$
$f _{3}=- f _{3}$
$\frac{1}{F_{R}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$P_{R}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$P_{1}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{f_{2}+f_{1}}{f_{1} f_{2}}$
$P_{2}=\frac{1}{f_{1}}+\frac{1}{f_{3}}=\frac{f_{3}-f_{1}}{f_{1} f_{3}}$
$P_{2}=\frac{1}{f_{2}}+\frac{1}{f_{3}}=\frac{f_{3}-f_{2}}{f_{2} f_{3}}$

Solution:

image
$A 'B'$ is the real image due to convex lens and it is at Focus of convex lens.
$A'B'$ acts as virtual object for concave lens and object distance is $+4 \,cm$
$\frac{1}{f} =\frac{1}{v}-\frac{1}{u} v=\frac{20}{4} $
$\frac{1}{v} =\frac{1}{f}+\frac{1}{u} v=5 \,cm$
$\frac{1}{v} =\frac{1}{-20}+\frac{1}{4} $
$\frac{1}{v} =\frac{-1+5}{20}=\frac{4}{20} $
$m =\frac{h_{i}}{h_{o}}=\frac{v}{u} $
$h_{i} =\frac{v h_{o}}{u} $
$=\frac{5 \times 2}{4}=\frac{10}{4}=2.5\, cm$

Solution:

For diffraction minima
$a \sin \theta= n \lambda$
$n =1 $ for $ I$ minimum
$a =\frac{\lambda}{\sin \theta}=\frac{6.5 \times 10^{-7}}{\sin 30} $
$=\frac{6.5 \times 10^{-7}}{0.5} $
$=13 \times 10^{-7} $
$=1.3 \times 10^{-6} m$
$=1.3$ micron

Solution:

image
$\phi=\left(\frac{2 \pi}{\lambda}\right)$ path difference
Path difference $= d \sin \theta$
$= d \left[\frac{ x }{ D }\right]$
$\phi=\frac{2 \pi}{\lambda}\left[\frac{ dx }{ D }\right]$
$I=4 I_{o} \cos ^{2} \frac{\phi}{2}$
$=4 I _{ o } \cos ^{2} \frac{\pi d }{\lambda D } \cdot x$

Solution:

$E _{ k \max } =\left( E _{ photon }- W \right) eV$
$=\left(\frac{12.42 \times 10^{-7}}{3 \times 10^{-7}}-1\right) eV$
$=(4-1) eV $
$E _{ k \max } =3 \,eV =3 \times 1.6 \times 10^{-19} J $
$ \frac{1}{2} mv _{\max }^{2} =3 \times 1.6 \times 10^{-19} $
$ v _{\max }^{2} =\frac{3 \times 2 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}$
$v _{\max }^{2} =10^{12} $
$ v _{\max } =10^{6} m s ^{-1} $

Solution:

For proton $v ^{2}=\frac{ c ^{2}}{4} v =\frac{ c }{2}$
$P =\sqrt{2 mE _{ k }} $
$=\sqrt{\not 2 m \frac{1}{\not 8_{4}} mc ^{2}} $
$P_{1} =\frac{ mc }{2}$
For photon
$E _{\text {photon }}= KE _{\text {proton }}$
$\frac{ h \not c}{\lambda}=\frac{1}{8} mc ^{\not 2}$
$P _{\text {photon }}=\frac{ h }{\lambda}=\frac{ mc }{8}= P _{2}$
$\frac{P_{1}-P_{2}}{P_{1}}=\frac{\frac{\not m c}{2}-\frac{\not m c}{8}}{\frac{\not m c}{2}}$
$=\frac{\frac{1}{2}-\frac{1}{8}}{\frac{1}{2}}=\frac{\frac{4-1}{8}}{\frac{1}{2}}$
$=\frac{3 \times 2}{8}=\frac{3}{4}$

Solution:

$ K _{\max }= h v-\phi_{o} $
$ y = m x - C$
Graph is a straight line with slope ' $h$ '
Till $v=v_{ o }$, no photoelectric emission occurs

Solution:

For $2^{\text {nd }}$ orbit of H-atom
$E _{2}=\frac{-13 \cdot 6}{2^{2}} eV$
For $3^{\text {rd }}$ orbit of $He ^{+}$
$E _{3}^{ He ^{+}} =\frac{-13 \cdot 6}{3^{2}} 2^{2}$
$=\frac{-13 \cdot 6}{4} \times \frac{4}{9} \times 2^{2} $
$= E _{2} \times \frac{16}{9}=\frac{16}{9} E _{2}$

Solution:

Number of stationary waves is $6$ i.e., $n =6$
$r=\frac{n^{2} \varepsilon_{0}^{2} h^{2}}{\pi m e^{2}}$
$=\frac{36 \varepsilon_{0}^{2} h^{2}}{\pi m e^{2}}$

Solution:

$L =\frac{ nh }{2 \pi}=\frac{3 h }{2 \pi} $
$n =3 $
$\lambda =\frac{ h }{ mv }=\frac{ h \cdot r }{ mvr }=\frac{ hr }{\frac{3 h }{2 \pi}}$
$=\frac{2}{3} \pi r$
For $Li ^{2+}$ atom radius of orbit.
$r=r_{0} \frac{n^{2}}{z} $
$r=a_{0} \times \frac{3^{2}}{3} $
$(a_0 = $ Bohr radius)
$\therefore \lambda =\frac{2}{3} . \pi \times a_{0} \times \frac{3^{2}}{3} $
$=2 \pi a_{0}$
Comparing
$\therefore P =2$

Solution:

image
$ Y =\overline{\overline{ AB } \cdot \overline{ AB }}$
$=\overline{ AB }+\overline{ AB } $
$= AB $

Solution:

LED is heavily doped PN-junction

Solution:

$ E _{1}=2.5\, eV$
$ E _{2}=2 \,eV $
$ E _{3}=3\, eV$
$\lambda=600\, nm $
$ \therefore E =\frac{1242}{\lambda_{ nm }}=\frac{1242}{600} eV $
$=2.07\, eV $
$( E _{1} $ and $E _{3}$ is $ > E $
Only $D _{2}$ will detect

Solution:

$S=$ Area under $v-t$ graph
Area under uniform motion > Area under triangle

Solution:

Area under a $-t$ graph $=v-u$
$\frac{1}{2} \times 8 \times 10= v $
$v =40 \,m s ^{-1}$

Solution:

$\frac{ u ^{2}}{ g }=16 \times 10^{3} m$
$u ^{2}=16 \times 10^{3} \times 10$
$u ^{2}=16 \times 10^{4}$
$u =400 \,m s ^{-1}$

Solution:

$\vec{ r }=\vec{ u } t +\frac{1}{2} \vec{ a } t ^{2}$
$x \hat{ i }+ y \hat{ j }=10 t \hat{ j }+\frac{1}{2}(8 \hat{ i }+2 \hat{ j }) t ^{2}$
$x \hat{ i }+ y \hat{ j }=10 t \hat{ j }+(4 \hat{ i }+\hat{ j }) t ^{2}$
$16 \hat{ i }+ yj =10 t \hat{ j }+4 t ^{2} \hat{ i }+ t ^{2} \hat{ j }$
$16 \hat{ i }+\hat{ j }=4 t ^{2} \hat{ i }+\left(10 t + t ^{2}\right) \hat{ j }$
$4 t ^{2}=16$
$t =4 s$
$y =10 t + t ^{2}$
$=20+4=24 \,m .$

Solution:

$r =4 \,cm$
$f = mr \omega^{2}$
$f =\mu mg$
$\mu mg = m \omega^{2} r$
$\mu g =\omega^{2} r$
$\mu g =\omega^{2} \times 4$ ... (1)
$\omega^{1}=2 \omega$
$\mu g =(2 \omega)^{2} r$
$\mu g =4 \omega^{2} r$ ... (2)
$\omega^{2} \times 4=4 \omega^{2} r$
$r =1 \,cm$

Solution:

$m _{1}=1 \,kg , \,\,u _{1}=12\, m s ^{-1}$
$m _{2}=3\, kg , \,\,u _{2}=-24\, m s ^{-1}$
$e =\frac{ v _{2}- v _{1}}{ u _{1}- u _{2}}$
$\frac{2}{3}=\frac{ v _{2}- v _{1}}{36}$
$v _{2}- v _{1}=\frac{36 \times 2}{3}$
$v _{2}- v _{1}=24 $ ... (1)
$m _{1} u _{1}+ m _{2} u _{2}= m _{1} v _{1}+ m _{2} v _{2}$
$1 \times 12+2 \times(-24)= v _{1}+2 v _{2} $
$12-48= v _{1}+2 v _{2}$
$v _{1}+2 v _{2}=-36 $
$\frac{- v _{1}+ v _{2}=24}{3 v _{2}=-12} $
$v _{2}=-4 \,m s ^{-1}$ [from equation (1)]
$-4- v _{1}=24$
$-4-24= v _{1} $
$v _{1}=-28 \,m s ^{-1}$

Solution:

$ E =\frac{1}{2} mv _{ cm }^{2}\left[1+\frac{ K ^{2}}{ R ^{2}}\right] $
$\frac{ E }{ v _{ cm }^{2}}=\frac{1}{2}\left[1+\frac{ K ^{2}}{ R ^{2}}\right]$
From graph, $\frac{ E }{ v _{ cm }^{2}}=\frac{3}{4}$
$\frac{3}{4}=\frac{1}{2}\left[1+\frac{ K ^{2}}{ R ^{2}}\right] $
$\frac{3}{2}-1=\frac{ K ^{2}}{ R ^{2}} $
$\frac{ K ^{2}}{ R ^{2}}=\frac{1}{2}$
For disc, $I =\frac{ mR ^{2}}{2}$
$\frac{m R^{2}}{2}=m K^{2} $
$\frac{K^{2}}{R^{2}}=\frac{1}{2}$

Solution:

image
$F _{ A } = F _{ B }=\frac{ G m _{1} m _{2}}{ r ^{2}}=\frac{ G 8 \times 2}{1^{2}}= G (16) $
$F _{ AB } =\sqrt{ F _{ A }^{2}+ F _{ B }^{2}+2 F _{ A } F _{ B } \cos \theta} $
$=\sqrt{ F _{ A }^{2}+ F _{ B }^{2}+2 F _{ A } F _{ B } \cos 120} $
$=\sqrt{ F _{ A }^{2}+ F _{ B }^{2}+2 F _{ A } F _{ B }\left(-\frac{1}{2}\right)} $
$F _{ AB } = F _{ A }= G (16)$
For resultant force on $2\, kg$ to be zero
$\overrightarrow{ F }_{ CG }=-\overrightarrow{ F }_{ AB }$
$\Rightarrow \frac{ G 2 \times 4}{ X ^{2}}= G (16)$
$X ^{2}=\frac{2 \times 4}{16}=\frac{1}{2}$
$X =\frac{1}{\sqrt{2}}$

Solution:

$r=\frac{2 T \cos \theta}{\rho g h}$
As we know $r \propto \frac{1}{h}$
$\frac{ r _{ P }}{ r _{ Q }}=\frac{ h _{ Q }}{ h _{ P }}=\frac{ h }{\frac{2}{3} h } $
$\Rightarrow \frac{ r _{ p }}{ r _{ Q }}=\frac{3}{2}$

Solution:

We know PV $= nRT$ or $\frac{1}{ T }=\frac{ nR }{ PV }$
Since, $P$ is constant, $P \Delta V = nR \Delta T$
(or) $\frac{\Delta V }{\Delta T }=\frac{ nR }{ P }$
Coefficient of volume expansion $\alpha_{v}=\frac{\Delta V}{V \Delta T}$
$\alpha_{v}=\frac{ nR }{ PV }=\frac{1}{ T }$

Solution:

$C _{ v }$ for monoatomic gas is $\frac{3 R }{2}$
$C _{ v }$ for diatomic gas is $\frac{5 R }{2}$
Total internal energy for mixture
$U =2 \times\left(\frac{3}{2}\right) RT +2\left(\frac{5}{2}\right) RT$
$U =8 \,RT$

Solution:

We know in circular motion net force acting on it must be $\frac{ mv ^{2}}{ r }$
When the rod rotates, electrons in it also rotates which produce electric field $E$ at distance $x$.
Force on the electron, $Fe = eE = m \omega^{2} x$
$\therefore Ee =\frac{ mv ^{2}}{ x } \quad( v = x \omega) $
$ Ee =\frac{ m ( x \omega)^{2}}{ x }$
$ \Rightarrow E =\frac{ m \omega^{2} x }{ e }$

Solution:

$\vec{ E }=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda}{ r }$
(or) $\vec{ E }=\frac{\lambda}{2 \pi \varepsilon_{0} r } \hat{ r } $
$\Rightarrow |\vec{ E }| \propto \frac{1}{ r }$

Solution:

Work done $( W )=$ Change in $K E$
Force $\times$ displacement $=$ change in $KE$
$QE \times x =0.12\, J$
$ Q (300) \times(0.5)=0.12 $
$ Q =\frac{0.12}{300 \times 0.5}=800\, \mu C$
The charge $Q$ is moving in the direction of electric field, hence it is positive.

Solution:

If $k$ be the dielectric constant, the distance increased due to introduced dielectric is $x = t -\frac{ t }{ k } \Rightarrow x = t \left(1-\frac{1}{ k }\right)$
Where, $t \rightarrow$ thickness of the dielectric.
According to the question,
$ x =3.5 \times 10^{-3} m $
$ t \left(1-\frac{1}{ k }\right)=3.5 \times 10^{-3} $
$1-\frac{1}{ k }=\frac{3.5 \times 10}{4 \times 10}=\frac{3.5}{4} $
$\frac{1}{ k }=1-\frac{35}{4}=\frac{0.5}{4}=0.125$
$k =8$

Solution:

$C_{B}=n^{\frac{1}{3}} C_{S}$
$C_{B}=8^{\frac{1}{3}} C_{S}$
$C_{B}=2 C_{S}$

Solution:

Polar molecules have permanent dipole moment.

Solution:

Number of capacitors to be connected in each row,
$m =\frac{1500}{500}=3$
Effective capacitance when connected in $n$ rows with $m$ capacitors in each row is,
$C_{\text {eff }}=n \frac{C}{m} $
$\therefore n \times \frac{2}{3}=6$
$n=\frac{18}{2}=9$
$ \Rightarrow n=9$
$\therefore $ Total number of capacitors required
$N = mn =3 \times 9=27$

Solution:

$q = CV $
$ C =\frac{ q }{ V }=\frac{120 \times 10^{-6}}{10}=12 \times 10^{-6} F $
$ C =12 \,\mu F $
$ U =\frac{1}{2} CV ^{2}$
$=\frac{1}{2} \times 12 \times 10^{-6} \times 10 \times 10 $
$ U =600 \times 10^{-6} J $
$ U =600 \,\mu J $

Solution:

$R _{2}= n ^{2} R _{1}$
$R _{2}=2^{2} \times 3$
$R _{2}=12 \,\Omega$

Solution:

$t =\frac{l}{ v _{ d }}$
$I =neAv_d$
${ v _{ d }=\frac{ I }{ neA }}$
$t =\frac{l neA }{ I }$
$t =\frac{1 \times 8 \times 10^{28} \times 1.6 \times 10^{-19} \times 5 \times 10^{-7}}{1}$
$t =6.4 \times 10^{3} s$

Solution:

A stationary charge in a magnetic field donot experience any force.

Solution:

$\frac{ F }{l} =\left(\frac{\mu_{0}}{4 \pi}\right) \frac{2 I _{1} I _{2}}{ d } $
$=\frac{10^{-7} \times 2 \times 10 \times 10}{10 \times 10^{-2}}$
$\frac{ F }{l}=2 \times 10^{-4} N m ^{-1}$
[attractive since the currents are in the same direction]

Solution:

image
$B =\mu_{0} nI$
where $n =\frac{ N }{2 \pi r }$
$B=\frac{\mu_{0} N I}{2 \pi\left(\frac{R_{1}+R_{2}}{2}\right)} $
$B=\frac{\mu_{0} N I}{\pi\left(R_{1}+R_{2}\right)}$

Solution:

$F _{ B } = qvB \sin \theta \,\, \theta = 90^{\circ}$
$ F _{ B } = qvB $
$ F _{ C } =\frac{ mv ^{2}}{ r } $
$ F _{ B } = F _{ C } $
$qvB =\frac{ mv ^{2}}{\left(\frac{ r }{2}\right)}$
$ v =\frac{ qrB }{2 m } $
$ B =\mu_{0} nI $
$ v =\frac{ qr \mu_{0} nI }{2 m }$

Solution:

Magnetic dip at poles, $\theta=90^{\circ}$
$B_{H}=B \cos \theta=0$

Solution:

No monopoles exist and electric field lines donot form closed loops

Solution:

$|e|=L \frac{d I}{d t}$
$|e|=6 \times 10^{-3}\left[\frac{I_{2}-I_{1}}{t_{2}-t_{1}}\right]$
$|e|=6 \times 10^{-3}\left[\frac{1}{40-20}\right]$
$e=3 \times 10^{-4} V .$