JEE Main Question Paper with Solution 2023 June 27th Shift 2 - Evening

JEE Main Physics Question Paper with Solution 2023 June 27th Shift 2 - Evening

A

$\left[ ML ^{-1} T ^{-1}\right]$

B

$\left[ ML ^{-1} T ^{-2}\right]$

C

$\left[ ML ^{2} T ^{-1}\right]$

D

$\left[ M ^{-1} L ^{3} T ^{0}\right]$

Solution

Pascal second
$\frac{ F }{ A } t =\frac{ MLT ^{-2}}{ L ^{2}} T = ML ^{-1} T ^{-1}$

A

$2.45 \times 10^{10}\, m$

B

$1.45 \times 10^{10}\, m$

C

$1.45 \times 10^{9} \,m$

D

$0.14 \times 10^{9} \,m$

Solution

image
$\frac{2000}{60 \times 60} \times \frac{\pi}{180}=\frac{ d }{1.5 \times 10^{\prime \prime}}$
$\Rightarrow d =\frac{2000}{60 \times 60} \times \frac{\pi}{180} \times 1.5 \times 10^{\prime \prime}$
$=\frac{\pi \times 1.5}{3 \times 6 \times 18} \times 10^{\prime \prime}=1.45 \times 10^{9}$

A

$19.6 \, m$

B

$29.4 \, m$

C

$39.2 \, m$

D

$73.5 \, m$

Solution

$ V ^{2}=2 \times 9.8 \times 4.9 $
$ V =9.8\, m / s$
Depth $=$ distance travelled in $3$ seconds
$=9.8 \times 3=29.4\, m$

A

$\frac{ k - m \omega^{2} l_{0}}{ m \omega^{2}}$

B

$\frac{ m \omega^{2} l_{0}}{ k + m \omega^{2}}$

C

$\frac{ m \omega^{2} l_{0}}{ k - m \omega^{2}}$

D

$\frac{ k + m \omega^{2} l_{0}}{ m \omega^{2}}$

Solution

image
$K \Delta x = m \left(\ell_{0}+\underline{\underline{\Delta}} x \right) w ^{2}$
$K \Delta x = m \ell_{0} w ^{2}+ mw ^{2} \Delta x$
$\Delta x =\frac{ m \ell_{0} w ^{2}}{ k - mw ^{2}}$

A

$-\frac{ Gm }{ d }[(4+\sqrt{2}) m +4 \sqrt{2} M ]$

B

$-\frac{ Gm }{ d }[(4+\sqrt{2}) M +4 \sqrt{2} m ]$

C

$-\frac{ Gm }{ d }\left[3 m ^{2}+4 \sqrt{2} M \right]$

D

$-\frac{ Gm }{ d }\left[6 m ^{2}+4 \sqrt{2} M \right]$

Solution

image
$-\frac{ Gm ^{2}}{ d } \times 4-\frac{ Gm ^{2}}{\sqrt{2} d } \times 2-\frac{ GMm }{ d } \times 4 \sqrt{2}$
$-\frac{ Gm }{ d }[(4+\sqrt{2}) m +4 \sqrt{2} M ]$

A

$P _{1} > P _{2}$

B

$P _{1}< P _{2}$

C

$P _{1}= P _{2}$

D

Insufficient data to draw any conclusion

Solution

$PV = nRT$
$\frac{ V }{ T }=\frac{ nR }{ P }$
$\frac{ nR }{ P _{1}}<\frac{ nR }{ P _{2}}$
$P _{2}< P _{1}$

A

$0 \,cm \,s ^{-1}$

B

$157 \, cm \, s ^{-1}$

C

$272 \,cm \, s ^{-1}$

D

$314 \, cm \,s ^{-1}$

Solution

$x =\sin \pi\left( t +\frac{1}{3}\right)$
$x =\sin \left(\pi t +\frac{\pi}{3}\right)$
$V =\frac{ dx }{ dt }=\cos \left(\pi t +\frac{\pi}{3}\right) \pi$
$=-\pi \times \frac{1}{2}=157\, cm / s$

A

$\frac{ q }{\varepsilon_{0}}$

B

$\frac{ q }{2 \varepsilon_{0}}$

C

$\frac{q}{4 \varepsilon_{0}}$

D

$\frac{q}{2 \pi \varepsilon_{0}}$

Solution

image
Total flux through complete spherical surface is $\frac{ q }{\varepsilon_{0}}$
So the flux through curved surface will be $\frac{ q }{2 \varepsilon_{0}}$. The flux through flat surface will be zero.
Remark : Electric flux through flat surface is zero but no option is given, option is available for electric flux passing through curved surface.

A

$1: 1$

B

$1: 4$

C

$\sqrt{3}: 2$

D

$\sqrt{3}: 1$

Solution

image
$F =\frac{ k (2)(2)}{(1)^{2}}$
$( F =$ Force between two charges $)$.
$F =4 k$
$F _{\text {net }}=2 F \cos 30^{\circ}=2 \cdot F \cdot \frac{\sqrt{3}}{2}= F \sqrt{3}$
$\left( F _{\text {net }}=\right.$ Net electrostatic force on one charged ball $)$
$\frac{ F _{\text {net }}}{ F }=\frac{\sqrt{3} F }{ F }=(\sqrt{3})$
Remark: Net force on any one of the ball is zero. But no option given in options.

A

2

B

1

C

3

D

-3

Solution

image
$B _{\text {net }}= B _{1}- B _{2}=\frac{\mu_{0} \times 4}{2 \pi[.04]}-\frac{\mu_{0} \times 2}{2 \pi[.06]}$
$\vec{ B }_{\text {net }}=\frac{\mu_{0}}{2 \pi}\left[\frac{200}{3}\right](-\hat{ k })$
$\vec{ F }= q [\vec{ v } \times \vec{ B }]$
$=[3 \pi]\left[(2 \hat{ i }+3 \hat{ j }) \times\left(\frac{\mu_{0}}{2 \pi}\right)\left(\frac{200}{3}\right)-\hat{ k }\right]$
$=3 \pi \times \frac{\mu_{0}}{2 \pi}\left(\frac{200}{3}\right)[2 \times \hat{ j }-3(\hat{ i })]$
$=\left(4 \pi \times 10^{-7}\right)(100)(-3 \hat{ i }+2 \hat{ j })$
$=4 \pi \times 10^{-5} \times[-3 \hat{ i }+2 \hat{ j }]$

A

$RC$

B

$\frac{L}{R}$

C

$\sqrt{ LC }$

D

$\frac{ L }{ C }$

Solution

$\left(\frac{L}{C}\right)$ does not have dimension of time. $RC , \frac{ L }{ R }$ are time constant while $\sqrt{ LC }$ is reciprocal of angular frequency or having dimension of time.

A

Both statement I and statement II are true.

B

Both statement I and statement II are false.

C

Statement I is correct but statement II is false.

D

Statement I is incorrect but statement II is true.

Solution

The statement II is wrong as the velocity of $\varepsilon m$ wave in a medium is $\frac{1}{\sqrt{\mu \varepsilon}}=\frac{1}{\sqrt{\mu_{0} \mu_{ r } \varepsilon_{0} \varepsilon_{ r }}}$.

A

wavelength speed and frequency decreases.

B

wavelength increases, speed decreases and frequency remains constant.

C

wavelength and speed decreases but frequency remains constant.

D

wavelength, speed and frequency increases.

A

Both statement I and statement II are true.

B

Both statement I and statement II are false

C

Statement I is correct but statement II is false

D

Statement I is incorrect but statement II is true.

Solution

When electron jump from lower to higher energy level, energy absorbed so statement-I incorrect. When electron jump from higher to lower energy level, energy of emitted photon
$E = E _{2}- E _{1}$
$hf = E _{2}- E _{1}$
$ \Rightarrow f =\frac{ E _{2}- E _{1}}{ h }$
so statement-II is correct.

A

Active region

B

Saturation state only

C

Cut-off state only

D

Saturation and cut-off state

Solution

Transistor act as a switch in saturation and cut of region

A

All statements are true

B

(a), (b) and (c) are true only

C

(a), (c) and (d) are true only

D

(b), (c) and (d) are true only

Solution

(a) For low frequency or high wavelength size of antenna required is high.
(b) E P R is low for longer wavelength.
(c) yes we want to avoid mixing up signals transmitted by different transmitter simultaneously.
(d) Low frequency signals sent to long distance by superimposing with high frequency.

Answer: 3

Solution

Net loss in $PE =$ Gain in $KE$
$12 gh -3 gh =\frac{1}{2} 3 v ^{2}+\frac{1}{2} 12 v ^{2}+\frac{1}{2}\left[12 r ^{2}\right]\left(\frac{ v }{ r }\right)^{2}$
$9 gh =\frac{1}{2}[3+12+12] v ^{2}$
$v^{2}=\frac{2 g h}{3} \Rightarrow v=\frac{1}{2} \sqrt{\frac{8}{3} g h}$
$x=\frac{8}{3} \simeq 3$

Answer: 1400

Solution

$Q = nC _{ p } \Delta T =\frac{ nv }{ v -1} R \Delta T$
$Q =\frac{ v }{ v -1} \omega=\frac{1.4}{0.4} \times 400=1400\, J$

Answer: 12

Solution

image
$I=\int JdA$
$=\int 10^{6} \times 2 \pi xdx$
$\left.=10^{6} \times 2 \pi \cdot x \frac{ x ^{2}}{2}\right]_{\frac{ r }{2}}^{ r }$
$=\pi \times 10^{6}\left[ r ^{2}-\frac{ r ^{2}}{4}\right]=12 \pi$
$x =12$

Answer: 3

Solution

$R =\left(\frac{ ma }{3}\right)+\left(\frac{ a }{2 m }\right)$
$\frac{ dR }{ dm }=\frac{ a }{3}-\frac{ a }{2 m ^{2}}=0$
$\frac{ a }{3}=\frac{ a }{2 m ^{2}}$
$m ^{2}=\frac{3}{2}$
$m =\sqrt{\frac{3}{2}}$
$x =3$

Answer: 2

Solution

image
$R =\frac{ mv }{ q _{ B }}$
$R _{ D }=\frac{\left(2 m _{ P }\right) v _{ D }}{ eB }$
$R _{ P }=\frac{\left( m _{ P }\right) v _{ P }}{ e B }$
$\frac{ R _{ D }}{ R _{ P }}=\frac{2 v _{ D }}{ v _{ P }}=\frac{2 v _{ D }}{\sqrt{2} v _{ D }}=\frac{\sqrt{2}}{1}$
$\frac{1}{2}(2 mp ) v _{ D }^{2}=\frac{1}{2} m _{ P } \cdot v _{ P }^{2}$
$\sqrt{2} v _{ D }= v _{ P }$
$x =2$

Answer: 16

Solution

image
$B _{ H }=4 \times 10^{-3} T$
$\theta \rightarrow 45^{\circ}$
$B _{ V }= B _{ H }$
$\epsilon=(\overrightarrow{ V } \times \overrightarrow{ B }) \cdot \vec{\ell}$
$=\left(\left(4 \times 10^{-3}\right)(20)\right) \frac{20}{100}$
$=16 \times 10^{-3} V =16\, mV$

JEE Main Chemistry Question Paper with Solution 2023 June 27th Shift 2 - Evening

A

B

C

D

Solution

$P\, vs \,d:$
$P =\left(\frac{ RT }{ M }\right) d$

A

In this molecule, orbitals of phosphorous are assumed to undergo $sp ^{3} d$ hybridization.

B

The geometry of $PCl _{5}$ is trigonal bipyramidal.

C

$PCl _{5}$ has two axial bonds stronger than three equatorial bonds.

D

The three equatorial bonds of $PCl _{5}$ lie in a plane.

Solution

In $PCl _{5}$, axial bonds are weaker than equatorial.

A

Both Statement I and Statement II are correct

B

Both Statement I and Statement II are incorrect

C

Statement I is correct but Statement II is incorrect

D

Statement I is incorrect but Statement II is correct

Solution

Statement-1 : wrong, $Au ^{+}$is correct, not $Au ^{+3}$
Statement-2 : correct

A

$HCN < H _{2} O < NH _{3}$

B

$HCN < CH _{4}< NH _{3}$

C

$CH _{4}< HCN < NH _{3}$

D

$CH _{4}< NH _{3}< HCN$

Solution

Order of H-Bonding
$CH _{4}< HCN < NH _{3}$
$NCH \ldots . NCH$
$H _{2} NH \ldots NH _{3}$

A

$Mg ^{2+}< Na ^{+}< F ^{-}< O ^{2-}< N ^{3-}$

B

$N ^{3-}< O ^{2-}< F ^{-}< Na ^{+}< Mg ^{2+}$

C

$F ^{-}< Na ^{+}< O ^{2-}< Mg ^{2+}< N ^{3-}$

D

$Na ^{+}< F ^{-}< Mg ^{2+}< O ^{2-}< N ^{3-}$

Solution

$N ^{-3}> O ^{-2}> F ^{-}> Na ^{+}> Mg ^{+2}$ (Radii) (Isoelectronic species)

A

Both $A$ and $R$ are correct and $R$ is the correct explanation of $A$.

B

Both $A$ and $R$ are correct but $R$ is NOT the correct explanation of $A$.

C

$A$ is correct but $R$ is not correct.

D

$A$ is not correct but $R$ is correct

Solution

Both A and R are correct and R is the correct explanation of A.

A

$Cr$

B

$Fe$

C

$Cu$

D

$Zn$

Solution

$ Cr ^{+2} / Cr \rightarrow-0.90 \,V $
$ Fe ^{+2} / Fe \rightarrow-0.44 \,V $
$Cu ^{+2} / Cu \rightarrow+0.34 \,V $
$ Zn ^{+2} / Zn \rightarrow-0.76 \,V$
So Ans. $Cu ^{+2} / Cu$

A

$Eu ^{2+}$ and $Tm ^{2+}$

B

$Sm ^{2+}$ and $Tm ^{3+}$

C

$Tb ^{4+}$ and $Yb ^{2+}$

D

$Dy ^{3+}$ and $Yb ^{3+}$

Solution

$Tb \rightarrow 4 f ^{9} 6 s ^{2}$
$Tb ^{+4} \rightarrow 4 f ^{7}$
$Yb \rightarrow 4 f ^{14} 6 s ^{2}$
$Yb ^{+2} \rightarrow 4 f ^{14}$

A

It is a linear polymer of 1, 3-butadiene.

B

It is obtained by copolymerization of 1,3butadiene and styrene.

C

It is obtained by copolymerization of 1,3butadiene and acrylonitrile.

D

The suffix N in Buna-N stands for its natural occurrence

Solution

It is copolymerization of 1, 3-butadiene and acrylonitrile.

A

A-III, B-I, C-II, D-IV

B

A-III, B-I, C-IV, D-II

C

A-I, B-IV, C-II, D-III

D

A-I, B-III, C-II, D-IV

Solution

A. Antipyretic - Reduces fever
B. Analgesic - Reduces pain
C. Tranquilizer - Reduces stress
D. Antacid - Reduces acidity (Stomach)

A

A-III, B-I, C-II, D-IV

B

A-II, B-I, C-IV, D-III

C

A-IV, B-I, C-III, D-II

D

A-IV, B-I, C-II, D-III

Solution

$CO _{3}{ }^{2-}$ will give $CO _{2}( g )$ which will turns lime water milky.
$S ^{2-}$ will give $H _{2} S ( g )$, will turns lead acetate paper
black
$SO _{3}{ }^{2-}$ will give $SO _{2}( g )$, which will turns acidified potassium dichromate solution green.
$NO _{2}{ }^{-}$will give brown $NO _{2}( g )$ will turn $KI$ solution blue.

Answer: 2

Solution

$\% H =\frac{7.5}{116} \times 100=6.5$
$\% O =\frac{60}{116} \times 100=51.7$
$\% C =\frac{48.5}{116} \times 100=41.8$
Relative atomicities $= H \Rightarrow 6.5$
$O \Rightarrow \frac{51.7}{16}=3.25$
$C \Rightarrow \frac{41.8}{12}=3.5$
Emperically formula is approx.. $CH _{2} O$
(A) $C _{2} H _{4} O _{2}$ (B) $CH _{2} O$ relate to this formula.

Answer: 2

Solution

Quantum no. of $\operatorname{set}(B)$ and $(C)$ can be correct. (A) and (D) are wrong as $n=\ell$ is not possible.

Answer: 8630

Solution

$n =5 \,mol$
$T =300 \,K$
$V _{1}=10 \,L$
$V _{2}=20\, L$
$w =- nRT \ell n \frac{ V _{2}}{ V _{1}}$
$=-5 \times 8.3 \times 300 \times \ell n \frac{20}{10}$
$=-8630.38 \, J$

Answer: 45

Solution

$W =2.5\, g $
$ K _{ b }=0.52 $
$ W _{\text {solvent }}=75 g $
$ M =$ Mol. Wt. of solute
$ T _{ B }^{\prime}=373.535 \,K $
$ T _{ B }^{ o }=373.15\, K$
$ \Delta T _{ B }=0.385= K _{ b } $ molality
$ 0.385=0.52 \times\left(\frac{2.5}{ M } \times \frac{1000}{75}\right) $
$M =45\, g \,mol ^{-1}$

Answer: 11

Solution

$0.001 M NaOH$
${\left[ OH ^{-}\right]=10^{-3} }$
$pOH =3$
$pH =11$

Answer: 51

Solution

$\frac{1}{2} H _{2}+ Ag ^{+} \rightarrow H ^{+}+ Ag$
$\Delta G ^{\circ}=- nE ^{\circ} F$
$=-1 \times 0.5332 \times 96500\, J$
$=-51.35\, kJ$
$\left( n =2\right.$ for $\left.H _{2}+2 Ag ^{+} \rightarrow 2 H ^{+}+2 Ag \right)$

Answer: 59

Solution

$\log _{10} \frac{ K _{2}}{ K _{1}}=\frac{ E _{ a }}{2.303 R }\left(\frac{1}{300}-\frac{1}{309}\right)$
$0.3=\frac{ E _{ a }}{2.303 \times 8.3}\left(\frac{9}{300 \times 309}\right)$
$E _{ a }=\frac{0.3 \times 2.303 \times 8.3 \times 300 \times 309}{9}$
$=59065.04\, J$
$E _{ a }=59.06 \,kJ$

Answer: 12

Solution

$\frac{x}{ m }= kP ^{\frac{1}{ n }} $
$\log \frac{ x }{ m }=\log k +\frac{1}{ n } \log P$
From graph
Slope $=\frac{1}{n}=1 \Rightarrow n=1$
Intercept $=\log k =0.602$
$k =4$
$\frac{x}{ m }=4 \times(0.03)^{\frac{1}{1}}$
$\frac{ x }{ m }=12 \times 10^{-2}$

Answer: 40

Solution

wt. of organic compound $=0.25\, g$
mass of $Cl =\frac{35.5}{143.5} \times 0.4 \,g$
mass $\%$ of $Cl$ in the organic compound
$=\frac{35.5 \times 0.4}{143.5 \times 0.25} \times 100 $
$=39.58 \%$

JEE Main Mathematics Question Paper with Solution 2023 June 27th Shift 2 - Evening

A

0

B

1

C

2

D

3

Solution

$C:(x-4)^{2}+(y-3)^{2}=4$
$E: \frac{(x-2)^{2}}{9}+\frac{y^{2}}{5}=1$
image
Lower Extremity of vertical diameter of circle $\rightarrow(4,1)$
Put in ellipse $\Rightarrow \frac{(4-2)^{2}}{9}+\frac{1}{5}-1$
$=\frac{4}{9}+\frac{1}{5}-1$
$=\frac{29}{45}-1 < 0$
Two Solution

A

117

B

106

C

125

D

136

Solution

$f(x)=\begin{vmatrix}a & -1 & 0 \\ a x & a & -1 \\ a^{2} & a x & a\end{vmatrix}$
$f(x)=a \begin{vmatrix}1 & -1 & 0 \\ x & a & -1 \\ x^{2} & a x & a\end{vmatrix}$
$=a\left[1\left(a^{2}+a x\right)+1\left(a x+x^{2}\right)\right]$
$\Rightarrow f(x)=a(x+a)^{2}$
so, $f^{\prime}(x)=2 a(x+a)$
as, $2 f^{\prime}(10)-f^{\prime}(5)+100=0$
$\Rightarrow 2 \times 2 a(10+a)-2 a(5+a)+100=0$
$\Rightarrow 40 a+4 a^{2}-10 a-2 a^{2}+100=0$
$2 a ^{2}+30 a +100=0$
$\Rightarrow a ^{2}+15 a +50=0$
$( a +10)( a +5)=0$
$a =-10$ or $a =-5$
Required $=(-10)^{2}+(-5)^{2}=125$

A

$-2+\sqrt{3}$

B

$2-\sqrt{3}$

C

$2+\sqrt{3}$

D

$-2-\sqrt{3}$

Solution

$a =\alpha- i \beta ; \alpha \in R ; \beta \in R$
$4 ix +(1+ i ) y =0$ and
$8\left(\cos \frac{2 \pi}{3}+ i \sin \frac{2 \pi}{3}\right) x +\overline{ a y}=0$
$\left|\begin{array}{cc}4 i & 1+ i \\ 8 e ^{ i 2 \pi / 3} \overline{ a }\end{array}\right|=0$
$\Rightarrow 4 i \overline{ a }-(1+ i ) 8 e ^{ i 2 \pi / 3}=0$
$\Rightarrow 4 i (\alpha+ i \beta)-8(1+ i )\left(\frac{-1+ i \sqrt{3}}{2}\right)=0$
$\Rightarrow i \alpha-\beta+1+\sqrt{3}+ i (1-\sqrt{3})=0$
$\Rightarrow \beta=\sqrt{3}+1$
$\alpha=\sqrt{3}-1$
So, $\frac{\alpha}{\beta}=\frac{\sqrt{3}-1}{\sqrt{3}+1}=2-\sqrt{3}$

A

16

B

32

C

64

D

128

Solution

$AB = i$
$|\text{adj}\left( B\right.$ adj $(2 A )|=| B$ adj $\left.(2 A )\right|^{2}$
$=| B |^{2}$ |adj $\left.(2 A )\right|^{2}$
$=| B |^{2}\left(|2 A |^{2}\right)^{2}=| B |^{2}\left(2^{6}| A |^{2}\right)^{2}$
$| A |=\frac{1}{8}$ and $| AB |=1 \Rightarrow| A || B |=1$
$\Rightarrow \frac{1}{8}| B |=1$
$\Rightarrow| B |=8$
required value $=64$

A

$\left(\frac{7}{3}\right)^{2}$

B

$\frac{7^{3}}{3^{2}}$

C

$\left(\frac{7}{3}\right)^{3}$

D

$\frac{7^{2}}{3^{3}}$

Solution

image
$\Rightarrow \frac{6^{2} S }{7^{2}}=\frac{2}{1-\frac{1}{7}}=\frac{2}{6} \times 7$
$\Rightarrow S -\frac{2 \times 7^{3}}{6^{3}} \Rightarrow 4 S -\frac{7^{3}}{3^{3}}-\left(\frac{7}{3}\right)^{3}$

A

$\frac{35}{27}$

B

$1$

C

$\frac{27}{28}$

D

$\frac{28}{27}$

Solution

$a _{1}, a _{2}, a _{3} \ldots . A . P . ; a _{1}=2 ; a _{10}=3 ; d _{1}=\frac{1}{9}$
$b _{1}, b _{2}, b _{3}, \ldots$ A.P. $; b _{1}=\frac{1}{2} ; b _{10}=\frac{1}{3} ; d _{2}=\frac{-1}{54}$
[Using $a _{1} b _{1}=1= a _{10} b _{10} ; d _{1}\, \&\, d _{2}$ are common differences respectively]
$a _{4} \cdot b _{4} =\left(2+3 d _{1}\right)\left(\frac{1}{2}+3 d _{2}\right)$
$=\left(2+\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{18}\right)$
$=\left(\frac{7}{3}\right)\left(\frac{8}{18}\right)=\frac{28}{27}$

A

$(3,2)$

B

$(2,3)$

C

$(2,2)$

D

$(3,4)$

Solution

$m=L \cdot \max$
$N=L \cdot \min$
$f(x)=\int\limits_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t$
$f^{\prime}(x)=\frac{\left(x^{4}-5 x^{2}+4\right) 2 x}{2+e^{x^{2}}}=\frac{2 x\left(x^{2}-1\right)\left(x^{2}-4\right)}{2+e^{x^{2}}}$
$=\frac{2 x(x-1)(x+1)(x-2)(x+2)}{2+e^{x^{2}}}$
image

A

$6-9 \sqrt{2}$

B

$6-\frac{9}{\sqrt{2}}$

C

$\frac{9}{2}-6 \sqrt{2}$

D

$\frac{9}{\sqrt{2}}-6$

Solution

At right hand vicinity of $x =0$ given equation does not satisfy
$\because \text { LHS }=\int\limits_{1^{-}}^{1} t ^{2} f ( t ) dt =0, \text { RHS }=\displaystyle\lim _{ x \rightarrow 0^{+}}\left(\sin ^{3} x +\cos x \right)=1$
LHS $\neq$ RHS hence data given in question is wrong hence BONUS
Correct data should have been
$\int\limits_{\cos x}^{1} t^{2} f(t) d t=\sin ^{3} x+\cos x-1$
Calculation for option
differentiating both sides
$-\cos ^{2} x f(\cos x) \cdot(-\sin x)=3 \sin ^{2} x \cdot \cos x-\sin x$
$\Rightarrow f(\cos x)=3 \tan x-\sec ^{2} x$
$\Rightarrow f^{\prime}(\cos x)(-\sin x)=3 \sec ^{2} x-2 \sec ^{2} x \tan x$
$\Rightarrow f^{\prime}(\cos x) \cos x=\frac{2}{\cos ^{2} x}-\frac{3}{\sin x \cdot \cos x}$
When $\cos x=\frac{1}{\sqrt{3}} ; \sin x=\frac{\sqrt{2}}{\sqrt{3}}$
$\therefore f^{\prime}\left(\frac{1}{\sqrt{3}}\right) \frac{1}{\sqrt{3}}=6-\frac{9}{\sqrt{2}}$

A

$1+6 \log _{ e}\left(\frac{6}{7}\right)$

B

$1-6 \log _{ e }\left(\frac{6}{7}\right)$

C

$\log _{e}\left(\frac{7}{6}\right)$

D

$1-7 \log _{ e }\left(\frac{6}{7}\right)$

Solution

$\int\limits_{0}^{1} \frac{1}{7^{\left[\frac{1}{x}\right]}} dx =-\int\limits_{1}^{0} \frac{1}{7^{\left[\frac{1}{x}\right]}} dx$

$=(-1)\left[\int\limits_{1}^{1 / 2} \frac{1}{7} dx +\int\limits_{1 / 2}^{1 / 3} \frac{1}{7^{2}} dx +\int\limits_{1 / 3}^{1 / 4} \frac{1}{7^{3}} dx +\ldots \ldots \infty\right] =\left(\frac{1}{7}+\frac{1}{2 \cdot 7^{2}}+\frac{1}{3 \cdot 7^{3}}+\ldots \infty\right)-\left(\frac{1}{7 \cdot 2}+\frac{1}{7^{2} \cdot 3}+\frac{1}{7^{2} \cdot 4} \ldots \infty\right)$
$=-\ln \left(1-\frac{1}{7}\right)-7\left(\frac{1}{7^{2} \cdot 2}+\frac{1}{7^{3} \cdot 3}+\frac{1}{7^{4} \cdot 4}+\ldots \ldots \infty\right)$
$={\left[\text{as} \ln (1+ x )= x -\frac{ x ^{2}}{2}+\frac{ x ^{3}}{3}-\frac{ x ^{4}}{4} \ldots \infty\right] }$
$\left[\right.$ as $\left.\ln (1-x)=-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4} \ldots \infty\right)\right]$
$=6 \ln \frac{6}{7}-7\left(-\ln \left(1-\frac{1}{7}\right)-\frac{1}{7}\right)$
$=6 \ln \frac{6}{7}+1$

A

$2 e$

B

$\frac{2}{ e }$

C

$2$

D

$\frac{1}{ e }$

Solution

$\frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}}$
I.f $=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y}$
$x e^{\tan ^{-1} y}=\int \frac{\tan ^{-1} y}{1+y^{2}} e^{\tan ^{-1} y} d y$
$x \cdot e ^{\tan ^{-1} y }=\left(\tan ^{-1} y -1\right) e ^{\tan ^{-1} y }+ c$
$\therefore (1,0)$ lies exit $c=2$.
For $y=\tan 1 \Rightarrow x=\frac{2}{ e }$

A

575

B

-575

C

576

D

-576

Solution

Vertex $(5,4)$
Directrix : $3 x+y-29=0$
Co-ordinates of $B$ (foot of directrix)
$\frac{x-5}{3}=\frac{y-4}{1}=-\left(\frac{15+4-29}{10}\right)=1$
image
$x=8, y=5$
$S=(2,3)$ (focus)
Equation of parabola
$P S=P M$
so equation is
$x^{2}+9 y^{2}-6 x y+134 x-2 y-711=0$
$a+b+c+d+k=9-6+134-2-711=-576$

A

An empty set

B

$\left(6, \frac{95}{9}\right]$

C

$\left[\frac{80}{9}, 10\right)$

D

$\left(9, \frac{92}{9}\right]$

Solution

$C: 4 x^{2}+4 y^{2}-12 x+8 y+k=0$
$\Rightarrow x^{2}+y^{2}-3 x+2 y+\left(\frac{k}{4}\right)=0$
Centre $\left(\frac{3}{2},-1\right) ; r=\sqrt{\frac{13-k}{2}}$
$\Rightarrow k \leq 13 \ldots$ (1)
(i) Point $\left(1, \frac{-1}{3}\right)$ lies on or inside circle $C$
$\Rightarrow S _{1} \leq 0 \Rightarrow k \leq \frac{92}{9}$ ...(2)
(ii) $C$ lies in $4^{\text {th }}$ quadrant
image
$r <1$
$\Rightarrow \frac{\sqrt{13- k }}{2}<1$
$\Rightarrow k <9 \ldots .(3)$
Hence $(1) \cap(2) \cap(3) \Rightarrow k \in\left(9, \frac{92}{9}\right]$

A

5

B

$\frac{50}{13}$

C

$4$

D

$\frac{63}{13}$

Solution

image
$\frac{ x +2}{4}=\frac{ y -1}{2}=\frac{ z +1}{3}=\lambda$
$( x , y , z )=(4 \lambda-2,2 \lambda+1,3 \lambda-1)$
$\overrightarrow{ AP }=(4 \lambda-3) \hat{ i }+(2 \lambda-1) \hat{ j }+(3 \lambda-5) \hat{ k }$
$\vec{ b }=4 \hat{ i }+2 \hat{ j }+3 \hat{ k }$
$\overrightarrow{ AP } \cdot \vec{ b }=0$
$4(4 \lambda-3)+2(2 \lambda-1)+3(3 \lambda-5)=0$
$29 \lambda=12+2+15=29$
$\lambda=1$
$P =(2,3,2)$
$3 x +4 y +12 z +23=0$
$d =\left|\frac{6+12+24+23}{\sqrt{9+16+144}}\right|$
$d =\left|\frac{65}{13}\right|=5$

A

$\frac{18}{\sqrt{5}}$

B

$\frac{22}{3 \sqrt{5}}$

C

$\frac{46}{3 \sqrt{5}}$

D

$6 \sqrt{3}$

Solution

$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{-1}$
$\frac{ x +3}{2}=\frac{ y -6}{1}=\frac{ z -5}{3}$
$A =(3,2,1)$
$B=(-3,6,5)$
$\overrightarrow{n_{1}}=2 \hat{i}+3 \hat{j}-\hat{k}$
$\overrightarrow{n_{2}}=2 \hat{i}+\hat{j}-3 \hat{k}$
$\overrightarrow{ BA }=6 \hat{ i }-4 \hat{ j }-4 \hat{ k }$
SHORTEST DISTANCE $=\frac{\left[\overrightarrow{ BA } \overrightarrow{ n _{1}} \overrightarrow{ n _{2}}\right]}{\left|\overrightarrow{ n _{1}} \times \overrightarrow{ n _{2}}\right|}$
$\overrightarrow{ n _{1}} \times \overrightarrow{ n _{2}}=\begin{vmatrix} \hat{ i } & \hat{ j } & \hat{ k } \\ 2 & 3 & -1 \\ 2 & 1 & 3 \end{vmatrix}$
$=10 \hat{ i }-8 \hat{ j }-4 \hat{ k }$
${\left[\overrightarrow{ BA } \overrightarrow{ n _{1}} \overrightarrow{ n _{2}}\right]=60+32+16=108}$
$\left|\overrightarrow{ n _{1}} \times \overrightarrow{ n _{2}}\right|=\sqrt{100+64+16}=\sqrt{180}$
$S . D=\frac{108}{\sqrt{180}}=\frac{108}{6 \sqrt{5}}=\frac{18}{\sqrt{5}}$

A

$\frac{\pi}{4}$

B

$-\frac{\pi}{4}$

C

$\frac{5 \pi}{6}$

D

$\frac{3 \pi}{4}$

Solution

image
Area $=\frac{1}{2}|\vec{ a } \times \vec{ b }|=2 \sqrt{2}$
$\Rightarrow|\vec{ a } \times \vec{ b }|=4 \sqrt{2}$
$|\vec{ a }|=1 \text { and }|\vec{ a } \cdot \vec{ b }|=|\vec{ a } \times \overrightarrow{ b }|$
$\Rightarrow \cos \theta=\sin \theta$
$\Rightarrow \theta=\frac{\pi}{4}$
$\therefore|\vec{ a } \times \vec{ b }|=4 \sqrt{2}$
$\Rightarrow|\vec{ a }||\vec{ b }| \sin \frac{\pi}{4}=4 \sqrt{2}$
$\Rightarrow|\vec{ b }|=8$
Now, $\vec{ c }=2 \sqrt{2}(\vec{ a } \times \vec{ b })-2 \vec{ b }$
$|\vec{ c }|=\sqrt{(2 \sqrt{2})^{2}|\vec{ a } \times \vec{ b }|^{2}+(2|\vec{ b }|)^{2}}=16 \sqrt{2}$
Now, $\vec{ b } \cdot \vec{ c }=-2|\vec{ b }|^{2}$
$\Rightarrow 8 \times 16 \sqrt{2} \times \cos \alpha=-2.64$
$\Rightarrow \cos \alpha=-\frac{1}{\sqrt{2}}$
$\Rightarrow \alpha=\frac{3 \pi}{4}$

A

162

B

320

C

674

D

420

Solution

mean $\bar{x}=\frac{4+5+6+6+7+8+x+y}{8}=6$
$\Rightarrow x+y=48-36=12$
Variance
$=\frac{1}{8}\left(16+25+36+36+49+64+x^{2}+y^{2}\right)-36=\frac{9}{4}$
$\Rightarrow x^{2}+y^{2}=80$
$\therefore x=4 ; y=8$
$x^{4}+y^{2}=256+64=320$

A

$\frac{1}{6}$

B

$\frac{5}{6}$

C

$\frac{2}{3}$

D

$\frac{6}{7}$

Solution

Required probability $=\frac{\text{ar}( ADEC )}{\text{ar}( ABC )}$
image
$=1-\frac{\text{ar}( BDE )}{\text{ar}( ABC )}$
$=1-\frac{\frac{1}{2} \times 2 \times 4}{\frac{1}{2} \times 8 \times 6}=1-\frac{1}{6}=\frac{5}{6}$

A

$\frac{26}{25}$

B

$\frac{25}{26}$

C

$\frac{50}{51}$

D

$\frac{52}{51}$

Solution

$\tan ^{-1} \frac{1}{1+n+n^{2}}=\tan ^{-1}\left(\frac{(n+1)-n}{1+n(n+1)}\right)$
$=\tan ^{-1}(n+1)-\tan ^{-1} n$
so, $\displaystyle\sum_{n=1}^{50}\left(\tan ^{-1}(n+1)-\tan ^{-1} n\right)$
$=\tan ^{-1} 51-\tan ^{-1} 1$
$\cot \left(\displaystyle\sum_{n=1}^{50} \tan ^{-1}\left(\frac{1}{1+n+n^{2}}\right)\right)=\cot \left(\tan ^{-1} 51+\tan ^{-1} 1\right)$
$=\frac{1}{\tan \left(\tan ^{-1} 51-\tan ^{-1} 1\right)}=\frac{1+51 \times 1}{51-1}$
$=\frac{52}{50}=\frac{26}{25}$

A

$10 x^{4}-10 x^{2}-5=0$

B

$16 x^{4}+20 x^{2}-5=0$

C

$16 x^{4}-20 x^{2}+5=0$

D

$16 x^{4}-10 x^{2}+5=0$

Solution

$\cos 72^{\circ}=\frac{\sqrt{5}-1}{4}$
$\Rightarrow 1-2 \sin ^{2} 36^{\circ}=\frac{\sqrt{5}-1}{4}$
$\Rightarrow 4-8 \alpha^{2}=\sqrt{5}-1$
$\Rightarrow 5-8 \alpha^{2}=\sqrt{5}$
$\Rightarrow \left(5-8 \alpha^{2}\right)^{2}=5$
$\Rightarrow 25+64 \alpha^{4}-80 \alpha^{2}=5$
$\Rightarrow 64 \alpha^{4}-80 \alpha^{2}+20=0$
$\Rightarrow 16 \alpha^{4}-20 \alpha^{2}+5=0$

A

$((\sim q) \wedge p) \wedge q$

B

$((\sim q ) \wedge p ) \wedge( p \wedge(\sim p ))$

C

$((\sim q ) \wedge p ) \vee( p \vee(\sim p ))$

D

$( p \wedge q ) \wedge(\sim( p \wedge q ))$

Solution

$( A )(\sim q \wedge p ) \wedge q =(\sim q \wedge q ) \wedge p = f$
(B) $(\sim q \wedge p ) \wedge( p \wedge \sim p )=\sim q \wedge( p \wedge \sim p )= f$
(C) $(\sim q \wedge p ) \vee( p \vee \sim p )=(\sim q \wedge p ) \vee( t )= t$
(D) $( p \wedge q ) \wedge(\sim( p \wedge q ))= f$

Answer: 190

Solution

$f ^{-1}( n )=\begin{cases}\frac{ n }{2} & ; n =2,4,6,8,10 \\ \frac{ n +11}{2} & ; \quad n =1,3,5,7,9\end{cases}$
$f ( g ( n ))= \begin{cases} n +1 & ; n \in \text { odd } \\ n -1 & ; \quad n \in \text { even }\end{cases}$
$g ( n )= \begin{cases} f ^{-1}( n +1) & ; n \in \text { odd } \\ f ^{-1}( n -1) & ; \quad n \in \text { even }\end{cases}$
$g ( n )= \begin{cases}\frac{ n +1}{2} ; & n \in \text { odd } \\ \frac{ n +10}{2} ; & n \in \text { even }\end{cases}$
$g (10) \cdot\left[ g (1)+ g (2)+ g (3)+ g (4)+ g (5)\right]$
$=10 \cdot\left[1+6+2+7+3]=190\right]$

Answer: 98

Solution

$x^{2}-4 \lambda x+5=0\left\langle_{\beta}^{\alpha}\right.$
$x^{2}-(3 \sqrt{2}+2 \sqrt{3}) x+(7+3 \lambda \sqrt{3})=0\left\langle_{\gamma}^{\alpha}\right.$
$\alpha+\beta=4 \lambda$
$\alpha+\gamma=3 \sqrt{2}+2 \sqrt{3}$
$\beta+\lambda=3 \sqrt{2}$
$\therefore \alpha=2 \lambda+\sqrt{3}$
$\beta=2 \lambda-\sqrt{3}$
$\alpha \gamma=7+3 \lambda \sqrt{3}$
$\alpha \beta=5$
$4 \lambda^{2}=8 \Rightarrow \lambda=\sqrt{2}$
$\therefore (\alpha+2 \beta+\lambda)^{2}=(4 \alpha+3 \sqrt{2})^{2}=(7 \sqrt{2})^{2}=98$

Answer: 180

Solution

Let $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} ; a , b , c , d \in\{0,1,2,3,4,5\}$ $a+b+c+d=p, p \in\{3,5,7\}$
Case-(i)
$a+b+c+d=3 ; a, b, c, d \in\{0,1,2,3\}$
No. of ways $={ }^{3+4-1} C _{4-1}={ }^{6} C _{3}=56$ ...(1)
Case-(ii)
$a+b+c+d=5 ; a, b, c, d \in\{0,1,2,3,4,5\}$
No. of ways $={ }^{3+4-1} C _{4-1}={ }^{8} C _{3}=56$ ...(2)
Case-(iii)
$a+ b+ c+ d=7$
No. of ways $=$ total ways when $a, b, c, d \in\{0,1,2$, $3,4,5,6,7\}$ - total ways when a, b, c, d $\notin\{6,7\}$
No of ways $={ }^{7+4-1} C_{4-1}=\left(\frac{\lfloor 4}{\lfloor 3}+\frac{4}{\underline{2}}\right)$
$={ }^{10} C _{3}-16=104$
Hence total no. of ways $=180$

Answer: 57

Solution

coefficients and there cumulative sum are:
Coefficient Commulative sum
$x ^{7 n } \rightarrow{ }^{7} C _{0}$ 1
$x ^{6 n -5} \rightarrow 2 \cdot{ }^{7} C _{1}$ 1+14
$x ^{5 n -10} \rightarrow 2^{2} \cdot{ }^{7} C _{2}$ 1 + 14+ 84
$ x ^{4 n -15} \rightarrow 2^{3} \cdot{ }^{7} C _{3}$ 1+ 14+ 84+280
$ x ^{3 n -20} \rightarrow 2^{4} \cdot{ }^{7} C _{4}$ 1+ 4+ 84+280+560 =939
$ x ^{2n -25} \rightarrow 2^{5} \cdot{ }^{7} C _{5}$

$3 n -20 \geq 0 \cap 2 n -25<0 \cap n \in I$
$\therefore 7 \leq n \leq 12$
Sum $=7+8+9+10+11+12=57$

Answer: 3

Solution

$f ( x )=[1+ x ]+\frac{\alpha^{2[ x ]+\{x\}}+[ x ]-1}{2[ x ]+\{ x \}}$
$\displaystyle\lim _{ x \rightarrow 0^{-}} f ( x )=\alpha-\frac{4}{3}$
$\Rightarrow 0+\frac{\alpha^{-1}-2}{-1}=\alpha-\frac{4}{3}$
$\Rightarrow 2-\frac{1}{\alpha}=\alpha-\frac{4}{3}$
$\Rightarrow \alpha+\frac{1}{\alpha}=\frac{10}{3}$
$\Rightarrow \alpha=3 ; \alpha \in I$

Answer: 16

Solution

$y =( x )=\left( x ^{ x }\right)^{ x }$
$\ln y ( x )= x ^{2} \cdot \ln x$
$\frac{1}{ y ( x )} \cdot y ^{\prime}( x )=\frac{ x ^{2}}{ x }+2 x \cdot \ln x$
$y ^{\prime}( x )= y ( x )[ x +2 x \ln x ]$
$y (1)=1 ; y ^{\prime}(1)=1$
$y ^{\prime \prime}( x )= y ^{\prime}( x )[ x +2 x \cdot \ln ( x )] + y ( x )[1+2(1+\ln x )]$
$y ^{\prime \prime}(1)=1[1+0]+1(1+2)=4$
$\frac{ d ^{2} y }{ dx ^{2}}=-\left(\frac{ dy }{ dx }\right)^{3} \cdot \frac{ d ^{2} x }{ dy ^{2}}$
$\Rightarrow 4=-\frac{ d ^{2} x }{ dy ^{2}}$
$\frac{ d ^{2} x }{ dy }=-4$
$-4+20=16$

Answer: 36

Solution

image
$A =\frac{3}{2} \int\limits_{0}^{1}\left(1- x ^{2 / 3}\right)^{3 / 2} dx$
Let $x =\sin ^{3} \theta$
$A =\frac{3}{2} \int\limits_{0}^{\pi / 2}\left(1-\sin ^{2} \theta\right)^{3 / 2} \cdot 3 \sin ^{2} \theta \cos \theta d \theta$
$=\frac{3}{2} \int\limits_{0}^{\pi / 2} 3 \sin ^{2} \theta \cos ^{4} \theta d \theta$
$=\frac{9}{2} \int\limits_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{4} \theta d \theta$
$A =\frac{9}{2} \times \frac{1.3 .1}{(2+4)(4)(2)} \cdot \frac{\pi}{2}$
$\Rightarrow A =\frac{9 \pi}{64}$
$\Rightarrow \frac{64 A }{\pi}=9$
$\Rightarrow \frac{256 A }{\pi}=36$

Answer: 320

Solution

$\left(1-x^{2}\right) \frac{d y}{d x}=x y+\left(x^{3}+2\right) \sqrt{1-x^{2}}$
$\Rightarrow \frac{d y}{d x}+\left(\frac{-x}{1-x^{2}}\right) y=\frac{x^{3}+2}{\sqrt{1-x^{2}}}$
$I F=e^{\int \frac{-x}{1-x^{2}} d x}=\sqrt{1-x^{2}}$
$y(x) \cdot \sqrt{1-x^{2}}=\frac{x^{4}}{4}+2 x+c$
$y(0)=0 \Rightarrow c=0$
$\sqrt{1-x^{2}} y (x)=\frac{x^{4}}{4}+2 x$
required value $=\int\limits_{-1 / 2}^{1 / 2}\left(\frac{x^{4}}{4}+2 x\right) d x-\frac{1}{4} \cdot 2 \int\limits_{0}^{1 / 2} x^{4} d x$
$=\frac{1}{10}\left(x^{5}\right)_{0}^{1 / 2}=\frac{1}{320}$
$k ^{-1}=320$

Answer: 11

Solution

image
$4 x+3 y+2=0$
$3 x-4 y-11=0$
image
$\frac{x}{-25}=\frac{y}{50}=\frac{1}{-25}$
$\frac{x-1}{\cos \theta}=\frac{y+2}{\sin \theta}=\pm 5$
$y=-2+5\left(-\frac{4}{5}\right)=-6$
$x=1+5\left(\frac{3}{5}\right)=4$
Req $\cdot$ distance
$\left|\frac{5(4)-12(-6)+51}{13}\right|$
$=\left|\frac{20+72+51}{13}\right|$
$=\frac{143}{13}=11$

Answer: 19

Solution

$P \left( A ^{\prime}\right)<\frac{1}{5}=\frac{36}{180}$
$5$ times the sum of missing number should be less than $36 .$
If 1 digit is missing $=7$
If 2 digit is missing $=9$
If 3 digit is missing $=2$
If 0 digit is missing $=1$
Alternate
$A$ is subset of $S$ hence
A can have elements:
type $1:\{\}$
image
As $P ( A ) \geq \frac{4}{5}$
Note: Type 1 to Type 4 elements can not be in set A as maximum probability of type 4 elements. $\left\{ E _{5}, E _{6}, E _{7}, E _{8}\right\}$ is $\frac{5}{36}+\frac{6}{36}+\frac{7}{36}+\frac{8}{36}=\frac{13}{18}<\frac{4}{5}$ Now for Type 5 acceptable elements let's call probability as $P _{5}$
$P _{5}=\frac{ n _{1}+ n _{2}+ n _{3}+ n _{4}+ n _{5}}{36} \leq \frac{4}{5}$
$\Rightarrow n _{1}+ n _{2}+ n _{3}+ n _{4}+ n _{5} \geq 28.8$
Hence, 2 possible ways $\left\{ E _{5}, E _{6}, E _{7}, E _{8}, E _{3}\right.$ or $\left.E _{4}\right\}$
$P _{6}= n _{1}+ n _{2}+ n _{3}+ n _{4}+ n _{5}+ n _{6} \geq 28.8$
$\Rightarrow 9$ possible ways
$P _{7} \Rightarrow n _{1}+ n _{2}+\ldots \ldots \ldots+ n _{7} \geq 288$
$\Rightarrow 7$ possible ways
$P _{8} \Rightarrow n _{1}+ n _{2}+\ldots \ldots \ldots+ n _{8} \geq 28.8$
$\Rightarrow 1$ possible way
Total $=19$