Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let v be the solution of the differential equation (1-x2) d y=(x y+(x3+2) ā1-x2) d x,-1 < x < 1 and y(0)=0 if ā« limits-(1/2)(1/2) ā1-x2 y(x) d x=k then k-1 is equal to :
Q. Let
v
be the solution of the differential equation
(
1
ā
x
2
)
d
y
=
(
x
y
+
(
x
3
+
2
)
1
ā
x
2
ā
)
d
x
,
ā
1
<
x
<
1
and
y
(
0
)
=
0
if
ā
2
1
ā
ā«
2
1
ā
ā
1
ā
x
2
ā
y
(
x
)
d
x
=
k
then
k
ā
1
is equal to :
120
159
JEE Main
JEE Main 2022
Differential Equations
Report Error
Answer:
320
Solution:
(
1
ā
x
2
)
d
x
d
y
ā
=
x
y
+
(
x
3
+
2
)
1
ā
x
2
ā
ā
d
x
d
y
ā
+
(
1
ā
x
2
ā
x
ā
)
y
=
1
ā
x
2
ā
x
3
+
2
ā
I
F
=
e
ā«
1
ā
x
2
ā
x
ā
d
x
=
1
ā
x
2
ā
y
(
x
)
ā
1
ā
x
2
ā
=
4
x
4
ā
+
2
x
+
c
y
(
0
)
=
0
ā
c
=
0
1
ā
x
2
ā
y
(
x
)
=
4
x
4
ā
+
2
x
required value
=
ā
1/2
ā«
1/2
ā
(
4
x
4
ā
+
2
x
)
d
x
ā
4
1
ā
ā
2
0
ā«
1/2
ā
x
4
d
x
=
10
1
ā
(
x
5
)
0
1/2
ā
=
320
1
ā
k
ā
1
=
320