Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If m and n respectively are the number of local maximum and local minimum points of the function f ( x )=∫ limits0x2 ( t 2-5 t +4/2+ c t ) dt, then the ordered pair ( m , n ) is equal to
Q. If
m
and
n
respectively are the number of local maximum and local minimum points of the function
f
(
x
)
=
0
∫
x
2
2
+
c
t
t
2
−
5
t
+
4
d
t
, then the ordered pair
(
m
,
n
)
is equal to
1806
163
JEE Main
JEE Main 2022
Application of Derivatives
Report Error
A
(
3
,
2
)
B
(
2
,
3
)
C
(
2
,
2
)
D
(
3
,
4
)
Solution:
m
=
L
⋅
max
N
=
L
⋅
min
f
(
x
)
=
0
∫
x
2
2
+
e
t
t
2
−
5
t
+
4
d
t
f
′
(
x
)
=
2
+
e
x
2
(
x
4
−
5
x
2
+
4
)
2
x
=
2
+
e
x
2
2
x
(
x
2
−
1
)
(
x
2
−
4
)
=
2
+
e
x
2
2
x
(
x
−
1
)
(
x
+
1
)
(
x
−
2
)
(
x
+
2
)