Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let for some real numbers α and β, a=α-i β. If the system of equations 4 ix +(1+ i ) y =0 and 8( cos (2 π/3)+i sin (2 π/3)) x+ bara y=0 has more than one solution then (α/β) is equal to :
Q. Let for some real numbers
α
and
β
,
a
=
α
−
i
β
. If the system of equations
4
i
x
+
(
1
+
i
)
y
=
0
and
8
(
cos
3
2
π
+
i
sin
3
2
π
)
x
+
a
ˉ
y
=
0
has more than one solution then
β
α
is equal to :
1263
183
JEE Main
JEE Main 2022
Determinants
Report Error
A
−
2
+
3
B
2
−
3
C
2
+
3
D
−
2
−
3
Solution:
a
=
α
−
i
β
;
α
∈
R
;
β
∈
R
4
i
x
+
(
1
+
i
)
y
=
0
and
8
(
cos
3
2
π
+
i
sin
3
2
π
)
x
+
a
y
=
0
∣
∣
4
i
8
e
i
2
π
/3
a
1
+
i
∣
∣
=
0
⇒
4
i
a
−
(
1
+
i
)
8
e
i
2
π
/3
=
0
⇒
4
i
(
α
+
i
β
)
−
8
(
1
+
i
)
(
2
−
1
+
i
3
)
=
0
⇒
i
α
−
β
+
1
+
3
+
i
(
1
−
3
)
=
0
⇒
β
=
3
+
1
α
=
3
−
1
So,
β
α
=
3
+
1
3
−
1
=
2
−
3