Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let g i :[(π/8), (3 π/8)] arrow R , i =1,2 and f :[(π/8), (3 π/8)] arrow R be functions such that g1(x)=1, g2(x)=|4 x-π| and f(x)= sin 2 x, for all x ∈[(π/8), (3 π/8)] . Define Si=∫ limits(π/8)(3 π/8) f(x) ⋅ gi(x) d x, i=1,2 The value of (16 S 1/π) is
Q. Let
g
i
:
[
8
π
,
8
3
π
]
→
R
,
i
=
1
,
2
and
f
:
[
8
π
,
8
3
π
]
→
R
be functions such that
g
1
(
x
)
=
1
,
g
2
(
x
)
=
∣4
x
−
π
∣
and
f
(
x
)
=
sin
2
x
, for all
x
∈
[
8
π
,
8
3
π
]
.
Define
S
i
=
8
π
∫
8
3
π
f
(
x
)
⋅
g
i
(
x
)
d
x
,
i
=
1
,
2
The value of
π
16
S
1
is_____
1794
187
JEE Advanced
JEE Advanced 2021
Report Error
Answer:
2
Solution:
g
1
:
[
8
π
,
8
3
π
]
→
R
,
i
=
1
,
2
,
f
:
[
r
π
,
r
3
π
]
→
R
g
1
=
1
,
g
2
=
∣4
x
−
π
∣
,
f
(
x
)
=
sin
2
x
S
1
=
π
/8
∫
3/8
f
(
x
)
⋅
g
1
(
x
)
d
x
S
1
=
π
/8
∫
3
π
/8
sin
2
x
d
x
=
π
/8
∫
3
π
/8
sin
2
(
2
π
−
x
)
d
x
⇒
2
S
1
=
π
/8
∫
3
π
/8
1
d
x
⇒
S
1
=
2
1
(
8
3
π
−
8
π
)
=
8
π
⇒
π
16
S
1
=
2