(A) Let g(x)=f(x)−3cos3x 0∫π/3g(x)dx=0∫π/3(f(x)−3cos3x)dx =0∫π/3f(x)dx−0∫π/33cos3xdx=0 ⇒g(x)=0 has at least one solution in [0,π/3]
(B) Let h(x)=f(x)−3sin3x+6/π 0∫π/3h(x)=0∫π/3(f(x)−3sin3x+π6)dx=0 ⇒h(x)=0 has at least one solution in [0,π/3]
(C) x→0limx0∫xf(t)dt=x→0lim1f(x)=f(0)=1 ⇒x→0limx2(x21−ex2)x0∫xf(t)dt=x→0limx−0∫xf(t)⋅(ex2−1)x2=−1
(D) x→0limxsinx⋅x0∫xf(t)=1