- Tardigrade
- Question
- Mathematics
- Let f1:(0, ∞) arrow R and f2:(0, ∞) arrow R be defined by f1(x)=∫ limits0x displaystyle prodj=121(t-j)j d t, x>0 and f 2( x )=98( x -1)50-600( x -1)49+2450, x >0, where, for any positive integer n and real numbers a 1, a 2, ldots . ., an, displaystyle prodi=1n ai denotes the product of a1, a2, ldots ., an . Let mi and ni, respectively, denote the number of points of local minima and the number of points of local maxima of function f i , i =1,2, in the interval (0, ∞ ). The value of 6 m2+4 n2+8 m2 n2 is
Q.
Let and be defined by and , where, for any positive integer and real numbers , denotes the product of Let and , respectively, denote the number of points of local minima and the number of points of local maxima of function , in the interval , ).
The value of is _____
Answer: 6
Solution: