Q.
You are given a curve, y=ln(x+e) . What will be the area enclosed between this curve and the coordinate axes?
2763
172
J & K CETJ & K CET 2017Application of Integrals
Report Error
Solution:
Given curve, y= ln (x+e)
Curve cuts x-axis at (1−e,0) and y-axis at (0,1) ∴ Required area =1−e∫01⋅ln(x+e)dx =[ln(x+e)⋅x]1−e0−∫1−e0x+e1⋅xdx =0−1−e∫0(x+ex+e−x+ee)dx =−1−e∫01dx+1−e∫0x+eedx =[−x]1−e0+[elog(x+e)]1−e0 =0+1−e+eloge−elog(1−e+e) =1−e+e=1