Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
You are given a curve, y = ln (x + e) . What will be the area enclosed between this curve and the coordinate axes?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. You are given a curve, $ y = ln (x + e) $ . What will be the area enclosed between this curve and the coordinate axes?
J & K CET
J & K CET 2017
Application of Integrals
A
$ 1 $
17%
B
$ 0 $
33%
C
$ 2e $
44%
D
$ e-1 $
6%
Solution:
Given curve, $y=$ ln $(x+e)$
Curve cuts $x$-axis at $(1-e, 0)$ and y-axis at $(0, 1)$
$\therefore $ Required area $=\int\limits_{1-e}^{0}1\cdot ln \left(x+e\right)dx $
$=\left[ln \left(x+e\right)\cdot x\right]_{1-e}^{0}-\int_{1-e}^{0}\frac{1}{x+e}\cdot x\,dx$
$=0- \int\limits_{1-e}^{0} \left(\frac{x+e}{x+e}-\frac{e}{x+e}\right)dx$
$=-\int\limits_{1-e}^{0}1 dx +\int\limits_{1-e}^{0}\frac{e}{x+e}dx$
$=\left[-x\right]_{1-e}^{0}+\left[e\,log\left(x+e\right)\right]_{1-e}^{0}$
$=0+1-e+e\,log\, e-e\, log \left(1-e+e\right)$
$=1-e+e=1$