For hydrogen atom, z=1 λ1=R(n121−n221),
where R=1.0973×107m−1 =1.1×107m−1= Rydberg constant.
For the Lyman series, n1=1 and n2=2,3,4,……∞ λ1=R(1−n221) λ=λmax, when n2=2 λmax1=43R ⇒λmax=3R4=121.5nm λ=λmin, when n2=∞ λmin1=R ⇒λmin=R1=91.1nm
Also, λ=(n22−1n22)R1=[1+(n22−1)1]λ0 =(1+m21)λ0 λ=(1+m21)λ0
where, m2=(n22−1)= an integer m=n22−1= not an integer
For the Balmer series, n1=2 and n2=3,4,5,6,........,∞ λ1=R(41−n221) λ=λmax, when n2=3 λmax1=365R λmax=5R36=656.2nm λ=λmin, when n2=∞ ⇒λmin=R4=364.5nm
Hence, for the Balmer series, λminλmax=4/R36/5R=59
For the Paschen series, n1=3 and n2=4,5,6,…….,∞ λ1=R(91−n221) λ=λmax, when n2=4 λmax1=R(91−161)=1447R ⇒λmax=7R144=1874.7nm λmax1=R(91−161)=1447R ⇒λmax=7R144=1874.7nm λ=λmin, when n2=∞ λmin1=9R ⇒λmin=R9=820.2nm