Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following statement(s) is(are) correct about the spectrum of hydrogen atom?

JEE AdvancedJEE Advanced 2021

Solution:

For hydrogen atom, $z =1$
$\frac{1}{\lambda}= R \left(\frac{1}{ n _{1}^{2}}-\frac{1}{ n _{2}^{2}}\right)$,
where $R =1.0973 \times 10^{7} m ^{-1}$
$=1.1 \times 10^{7} m ^{-1}=$ Rydberg constant.
For the Lyman series, $n _{1}=1$ and $n _{2}=2,3,4, \ldots \ldots \infty$
$\frac{1}{\lambda}= R \left(1-\frac{1}{ n _{2}^{2}}\right) $
$\lambda=\lambda_{\max }, $ when $ n _{2}=2$
$\frac{1}{\lambda_{\max }}=\frac{3 R }{4} $
$\Rightarrow \lambda_{\max }=\frac{4}{3 R }=121.5\, nm $
$\lambda=\lambda_{\min },$ when $n _{2}=\infty $
$\frac{1}{\lambda_{\min }}= R $
$\Rightarrow \lambda_{\min }=\frac{1}{ R }=91.1\, nm$
Also, $ \lambda=\left(\frac{ n _{2}^{2}}{ n _{2}^{2}-1}\right) \frac{1}{ R }=\left[1+\frac{1}{\left( n _{2}^{2}-1\right)}\right] \lambda_{0}$
$=\left(1+\frac{1}{ m ^{2}}\right) \lambda_{0} $
$\lambda=\left(1+\frac{1}{ m ^{2}}\right) \lambda_{0}$
where,
$ m ^{2}=\left( n _{2}^{2}-1\right)=$ an integer
$ m =\sqrt{ n _{2}^{2}-1}=$ not an integer
For the Balmer series, $n _{1}=2$ and $n _{2}=3,4,5,6,........, \infty$
$\frac{1}{\lambda}=R\left(\frac{1}{4}-\frac{1}{n_{2}^{2}}\right)$
$\lambda=\lambda_{\max }$, when $n _{2}=3$
$\frac{1}{\lambda_{\max }}=\frac{5 R }{36}$
$\lambda_{\max }=\frac{36}{5 R }=656.2\, nm$
$\lambda=\lambda_{\min }$, when $n _{2}=\infty$
$\Rightarrow \lambda_{\min }=\frac{4}{ R }=364.5\, nm$
Hence, for the Balmer series,
$\frac{\lambda_{\max }}{\lambda_{\min }}=\frac{36 / 5 R }{4 / R }=\frac{9}{5}$
For the Paschen series, $n _{1}=3$ and $n _{2}=4,5,6, \ldots \ldots ., \infty$
$\frac{1}{\lambda}= R \left(\frac{1}{9}-\frac{1}{ n _{2}^{2}}\right)$
$\lambda=\lambda_{\max }$, when $n _{2}=4$
$\frac{1}{\lambda_{\max }}= R \left(\frac{1}{9}-\frac{1}{16}\right)=\frac{7 R }{144}$
$\Rightarrow \lambda_{\max }=\frac{144}{7 R }=1874.7 \,nm$
$\frac{1}{\lambda_{\max }}= R \left(\frac{1}{9}-\frac{1}{16}\right)=\frac{7 R }{144}$
$\Rightarrow \lambda_{\max }=\frac{144}{7 R }=1874.7\, nm$
$\lambda=\lambda_{\min }$, when $n _{2}=\infty$
$\frac{1}{\lambda_{\min }}=\frac{ R }{9}$
$ \Rightarrow \lambda_{\min }=\frac{9}{ R }=820.2\, nm$