Let vector be ai^+bj^+ck^. ∵ai^+bj^+ck^, i^+j^ and j^+k^ are coplanar. ∴∣∣a10b11c01∣∣=0 ⇒a−b+c=0
Also, (ai^+bj^+ck^) is parallel to (2i^−2j^−4k^) ∴(ai^+bj^+ck^)×(2i^−2j^−4k^)=0
i.e. ∣∣i^a2j^b−2k^c−4∣∣=0 ⇒i^(−4b+2c)−j^(−4a−2c)+k^(−2a−2b)=0 ⇒−4b+2c=0, 4a+2c=0, 2a+2b=0
i.e. −1a=1b=2c or 1a=−1b=−2c ∴ Required vector is i^−j^−2k^.