Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Vector coplanar with vectors hati+ hatj and hatj+ hatk and parallel to the vector 2 hati-2 hatj-4 hatk, is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Vector coplanar with vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ and parallel to the vector $2\hat{i}-2\hat{j}-4\hat{k}$, is
Vector Algebra
A
$\hat{i}-\hat{k}$
0%
B
$\hat{i}-\hat{j}-2\hat{k}$
56%
C
$\hat{i}+\hat{j}-\hat{k}$
19%
D
$3\hat{i}+3\hat{j}-6\hat{k}$
25%
Solution:
Let vector be $a\hat{i}+b\hat{j}+c\hat{k}$.
$\because a \hat{i}+b\hat{j}+c\hat{k}$, $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ are coplanar.
$\therefore \begin{vmatrix}a&b&c\\ 1&1&0\\ 0&1&1\end{vmatrix} = 0$
$\Rightarrow a - b + c = 0$
Also, $\left(a\hat{i}+b\hat{j}+c\hat{k}\right)$ is parallel to $\left(2\hat{i}-2\hat{j}-4\hat{k}\right)$
$\therefore \left(a\hat{i}+b\hat{j}+c\hat{k}\right)\times \left(2\hat{i}-2\hat{j}-4\hat{k}\right) = \vec{0}$
i.e. $\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\ a&b&c\\ 2&-2&-4\end{vmatrix} = 0$
$\Rightarrow \hat{i}\left(-4b+2c\right)-\hat{j}\left(-4a-2c\right)+\hat{k}\left(-2a-2b\right) = 0$
$\Rightarrow -4b + 2c = 0$, $4a + 2c = 0$, $2a + 2b =0$
i.e. $\frac{a}{-1} = \frac{b}{1} = \frac{c}{2}$ or
$\frac{a}{1} = \frac{b}{-1} = \frac{c}{-2}$
$\therefore $ Required vector is $\hat{i}-\hat{j} - 2\hat{k}$.