According to the question ∣A+B∣=n∣A−B∣
Squaring both side A2+B2+2ABcosθ=n2(A2+B2−2ABcosθ) A2+B2+2ABcosθ=n2A2+n2B2−n2×2ABcosθ 2A2+2A2cosθ=2n2A2−2n2A2cosθ 2A2(1+cosθ)=2n2A2(1−cosθ) 1+cosθ=n2−n2cosθ∣A+B∣=A2+B2+2ABcosθ 1+cosθ+n2cosθ=n2∣A−B∣=A2B2−2ABcosθ cosθ=n2+1n2−1∣A∣=∣B∣ θ=cos−1(n2+1n2−1)