Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitudes of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to $n$ times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B },$ then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ is:

Motion in a Plane

Solution:

According to the question
$|\overrightarrow{ A }+\overrightarrow{ B }|= n |\overrightarrow{ A }-\overrightarrow{ B }|$
Squaring both side
$A^{2}+B^{2}+2 A B \cos \theta=n^{2}\left(A^{2}+B^{2}-2 A B \cos \theta\right)$
$A^{2}+B^{2}+2 A B \cos \theta=n^{2} A^{2}+n^{2} B^{2}-n^{2} \times 2 A B \cos \theta$
$2 A^{2}+2 A^{2} \cos \theta=2 n^{2} A^{2}-2 n^{2} A^{2} \cos \theta$
$2 A^{2}(1+\cos \theta)=2 n^{2} A^{2}(1-\cos \theta)$
$1+\cos \theta=n^{2}-n^{2} \cos \theta|\vec{A}+\vec{B}|=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}$
$1+\cos \theta+n^{2} \cos \theta=n^{2} \quad|\vec{A}-\vec{B}|=\sqrt{A^{2} B^{2}-2 A B \cos \theta}$
$\cos \theta=\frac{n^{2}-1}{n^{2}+1} \quad|\vec{A}|=|\vec{B}|$
$\theta=\cos ^{-1}\left(\frac{n^{2}-1}{n^{2}+1}\right)$