Q.
Two curves C1:y=x2−3 and C2:y=kx2,k∈R intersect each other at two different points. The tangent drawn to C2 at one of the points of intersection A≡(a,y1),(a>0) meets C1 again at B(1,y2)(y1=y2). The value of ' a ' is
Point A(a,y1) lies on C1 and C2 hence y1=a2−3 and y2=ka2 ⇒a2−3=ka2 now y=kx2⇒dxdy=2kx ∴dxdy](a,y1)=2ka=1−ay2−y1( But y2=1−3=−2) =1−a−2−(a2−3)⇒2ka=1−a1−a2=1+a 2ka=1+a
Substituting k=a2a2−3 from (1) in (2) we get a22a(a2−3)=1+a⇒2a2−6=a+a2⇒a2−a−6=0⇒a=+3,a=−2 (rejected) ]