Q. Two curves $C_1: y=x^2-3$ and $C_2: y=k x^2, k \in R$ intersect each other at two different points. The tangent drawn to $C _2$ at one of the points of intersection $A \equiv\left( a , y _1\right),( a >0)$ meets $C _1$ again at $B \left(1, y _2\right)$ $\left( y _1 \neq y _2\right)$. The value of ' $a$ ' is
Application of Derivatives
Solution: