Key Idea: The equations ax2+bx+c=0 ...(i) and dx2+gx+f=0 ...(ii) have a common roots, if (dc−af)2=(bf−cg)(ag−bd) Given quadratic equations are x2−kx−21=0 ...(iii) and x2−3kx+35=0 ...(iv) Now, on comparing Eqs. (iii) and Eqs. (iv) with (i) and (ii), we get a=1,b=−k,c=−21,d=1,g=−3k,f=35∴ For common roots (−21−35)2=(−35k−63k)(−3k+k)⇒(−56)2=(−98k)(−2k)⇒k2=98×256×56=16⇒k=±4 Alternative Method Let a be the common root to the equations x2−kx−21=0 and x2−3kx+35=0⇒α2−kα−21=0 ...(i) and α2−3kα+35=0 ...(ii) Now, by cross multiplication method (−35k−63k)α2=(−21−35)α=(−3k+k)1⇒−98kα2=−56α=2k−1⇒−56α=2k−1⇒α=k28 ?. (iii) Also, −98kα2=2k−1⇒α2=298=49 ?. (iv) From Eqs. (iii) and (iv) 49=k228×28⇒k2=4928×28=16⇒k=±4