Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The values of k for which the equations x2-kx-21=0 and x2-3kx+35=0 will have a common roots are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The values of k for which the equations $ {{x}^{2}}-kx-21=0 $ and $ {{x}^{2}}-3kx+35=0 $ will have a common roots are
Jamia
Jamia 2006
A
$ k=\pm 4 $
B
$ k=\pm 1 $
C
$ k=\pm 3 $
D
$ k=0 $
Solution:
Key Idea: The equations $ a{{x}^{2}}+bx+c=0 $ ...(i) and $ d{{x}^{2}}+gx+f=0 $ ...(ii) have a common roots, if $ {{(dc-af)}^{2}}=(bf-cg)(ag-bd) $ Given quadratic equations are $ {{x}^{2}}-kx-21=0 $ ...(iii) and $ {{x}^{2}}-3kx+35=0 $ ...(iv) Now, on comparing Eqs. (iii) and Eqs. (iv) with (i) and (ii), we get $ a=1,b=-k,\text{ }c=-\text{ }21,\text{ }d=1,\text{ }g=-3\text{ }k,\text{ }f=35 $ $ \therefore $ For common roots $ {{(-21-35)}^{2}}=(-35k-63k)(-3k+k) $ $ \Rightarrow $ $ {{(-56)}^{2}}=(-98k)(-2k) $ $ \Rightarrow $ $ {{k}^{2}}=\frac{56\times 56}{98\times 2}=16 $ $ \Rightarrow $ $ k=\pm 4 $ Alternative Method Let a be the common root to the equations $ {{x}^{2}}-kx-21=0 $ and $ {{x}^{2}}-3kx+35=0 $ $ \Rightarrow $ $ {{\alpha }^{2}}-k\alpha -21=0 $ ...(i) and $ {{\alpha }^{2}}-3k\alpha +35=0 $ ...(ii) Now, by cross multiplication method $ \frac{{{\alpha }^{2}}}{(-35k-63k)}=\frac{\alpha }{(-21-35)}=\frac{1}{(-3k+k)} $ $ \Rightarrow $ $ \frac{{{\alpha }^{2}}}{-98k}=\frac{\alpha }{-56}=\frac{-1}{2k} $ $ \Rightarrow $ $ \frac{\alpha }{-56}=\frac{-1}{2k} $ $ \Rightarrow $ $ \alpha =\frac{28}{k} $ ?. (iii) Also, $ \frac{{{\alpha }^{2}}}{-98k}=\frac{-1}{2k} $ $ \Rightarrow $ $ {{\alpha }^{2}}=\frac{98}{2}=49 $ ?. (iv) From Eqs. (iii) and (iv) $ 49=\frac{28\times 28}{{{k}^{2}}} $ $ \Rightarrow $ $ {{k}^{2}}=\frac{28\times 28}{49}=16 $ $ \Rightarrow $ $ k=\pm 4 $