Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of undersetn arrow ∞ textLim ((1- cos (2/n)/1+ cos (2)n))( displaystyle∑r=12 n (n/√8 n2-r2))( displaystyle∑r=13 n (n/√18 n2-r2)) is equal to
Q. The value of
n
→
∞
Lim
(
1
+
c
o
s
n
2
1
−
c
o
s
n
2
)
(
r
=
1
∑
2
n
8
n
2
−
r
2
n
)
(
r
=
1
∑
3
n
18
n
2
−
r
2
n
)
is equal to
155
84
Integrals
Report Error
A
4
π
2
B
8
π
2
C
16
π
2
D
16
3
π
2
Solution:
n
→
∞
Lim
(
1
+
c
o
s
n
2
1
−
c
o
s
n
2
)
(
r
=
1
∑
2
n
8
n
2
−
r
2
n
)
(
r
=
1
∑
3
n
18
n
2
−
r
2
n
)
=
n
→
∞
Lim
2
1
⋅
(
n
2
4
1
−
c
o
s
n
2
)
⋅
4
⋅
⎝
⎛
r
=
1
∑
2
n
n
⋅
n
8
−
n
2
r
2
n
⎠
⎞
⎝
⎛
r
=
1
∑
3
n
n
⋅
n
18
−
n
2
r
2
n
⎠
⎞
=
2
1
×
2
1
×
4
(
0
∫
2
8
−
x
2
d
x
)
(
0
∫
3
18
−
x
2
d
x
)
=
(
sin
−
1
2
2
x
)
0
2
(
sin
−
1
3
2
x
)
0
3
=
4
π
⋅
4
π
=
16
π
2