Q. The value of $\underset{n \rightarrow \infty}{\text{Lim}} \left(\frac{1-\cos \frac{2}{n}}{1+\cos \frac{2}{n}}\right)\left(\displaystyle\sum_{r=1}^{2 n} \frac{n}{\sqrt{8 n^2-r^2}}\right)\left(\displaystyle\sum_{r=1}^{3 n} \frac{n}{\sqrt{18 n^2-r^2}}\right)$ is equal to
Integrals
Solution: