Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of underset h arrow 0 textLim (∫ limits a x + h (( sin t )2014/ t 2013+1) dt -∫ limits a x (( sin t )2014/ t 2013+1) dt / h ) is equal to
Q. The value of
h
→
0
Lim
h
a
∫
x
+
h
t
2013
+
1
(
s
i
n
t
)
2014
d
t
−
a
∫
x
t
2013
+
1
(
s
i
n
t
)
2014
d
t
is equal to
31
93
Integrals
Report Error
A
2014
(
x
)
2013
+
1
2013
(
s
i
n
x
)
2013
B
(
x
)
2014
+
1
(
s
i
n
x
)
2015
C
x
2013
+
1
(
s
i
n
x
)
2014
D
2013
(
x
2012
+
1
)
2014
(
s
i
n
x
)
2013
Solution:
h
→
0
Lim
h
a
∫
x
+
h
t
2013
+
1
(
s
i
n
t
)
2014
d
t
−
a
∫
x
t
2013
+
1
(
s
i
n
t
)
2014
d
t
differentiate w.r.t. h
h
→
0
Lim
1
(
x
+
h
)
2013
+
1
(
s
i
n
(
x
+
h
)
)
2014
−
0
=
x
2013
+
1
(
s
i
n
x
)
2014