Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\underset{ h \rightarrow 0}{\text{Lim}} \frac{\int\limits_{ a }^{ x + h } \frac{(\sin t )^{2014}}{ t ^{2013}+1} dt -\int\limits_{ a }^{ x } \frac{(\sin t )^{2014}}{ t ^{2013}+1} dt }{ h }$ is equal to

Integrals

Solution:

$\underset{ h \rightarrow 0}{\text{Lim}} \frac{\int\limits_a^{x+h} \frac{(\sin t)^{2014}}{t^{2013}+1} d t-\int\limits_a^x \frac{(\sin t)^{2014}}{t^{2013}+1} d t}{h}$
differentiate w.r.t. h
$\underset{ h \rightarrow 0}{\text{Lim}} \frac{\frac{(\sin (x+h))^{2014}}{(x+h)^{2013}+1}-0}{1}=\frac{(\sin x)^{2014}}{x^{2013}+1}$