Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the integral $\int\frac{cos x}{sin x + cos x}dx$ is equal to

KEAMKEAM 2013Integrals

Solution:

Let $I=\int \frac{\cos x}{\sin x+\cos x} \,d x $
$=\frac{1}{2} \int \frac{2 \cos x}{\sin x+\cos x} \,d x $
$=\frac{1}{2} \int \frac{(\sin x+\cos x)+(\cos x-\sin x)}{(\sin x+\cos x)} d x $
$=\frac{1}{2} \int d x+\frac{1}{2} \int \frac{\cos x-\sin x}{\sin x+\cos x} \cdot d x $
$=\frac{1}{2} x+\frac{1}{2} \log |\sin x+\cos x|+C$
$=\frac{1}{2}[x+\log |\sin x+\cos x|]+C$