Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limits0π / 2 (1/1+( tan x)101) d x is equal to
Q. The value of the integral
0
∫
π
/2
1
+
(
t
a
n
x
)
101
1
d
x
is equal to
2291
191
WBJEE
WBJEE 2012
Integrals
Report Error
A
1
17%
B
6
π
14%
C
8
π
9%
D
4
π
61%
Solution:
Let
I
=
0
∫
π
/2
1
+
(
t
a
n
x
)
101
1
d
x
=
0
∫
π
/2
1
+
{
t
a
n
(
2
π
−
x
)
}
101
d
x
=
0
∫
π
/2
1
+
(
c
o
t
x
)
101
d
x
=
0
∫
π
/2
t
a
n
x
101
+
1
t
a
n
x
101
d
x
=
0
∫
π
/2
1
+
t
a
n
x
101
1
+
t
a
n
x
101
−
1
=
[
x
]
0
π
/2
−
I
⇒
I
=
2
π
−
I
⇒
2
I
=
2
π
⇒
I
=
4
π