Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the integral $\int\limits_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x$ is equal to

WBJEEWBJEE 2012Integrals

Solution:

Let $I =\int\limits_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x$
$=\int\limits_{0}^{\pi / 2} \frac{d x}{1+\left\{\tan \left(\frac{\pi}{2}-x\right)\right\}^{101}}$
$=\int\limits_{0}^{\pi / 2} \frac{d x}{1+(\cot x)^{101}}$
$=\int\limits_{0}^{\pi / 2} \frac{\tan x^{101}}{\tan x^{101}+1} d x$
$=\int\limits_{0}^{\pi / 2} \frac{1+\tan x^{101}-1}{1+\tan x^{101}}=[x]_{0}^{\pi / 2}-I$
$\Rightarrow I=\frac{\pi}{2}-I$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$