If f(x) is a continuous function defined on [a, b], then m(b−a)≤∫abf(x)dx≤M(b−a)
where, M and m are maximum and minimum values
respectively of f(x) in [a, b].
Here, f(x) = 1 + e−x2 is continuous in [0,1],
Now, 0<x<1⇒x2<x⇒ex2<exe−x2>e−x
Again, 0 < x < 1⇒x2>0⇒ex2>e0⇒e−x3<1∴e−x<e−x2<1,∀x∈[0,1] ⇒1+e−x<1+e−x2<2,∀x∈[0,1] ⇒∫01(1+e−x)dx<∫01(1+e−x2)dx<∫012dx ⇒2−e1<∫01(1+e−x2)dx<2