Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the definite integral ∫ 01 (1+e-x2) dx is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of the definite integral $\int _0^1 (1+e^{-x^2}) dx \, is$
IIT JEE
IIT JEE 1981
A
1
0%
B
2
0%
C
$1+e^{-1}$
62%
D
None of these
38%
Solution:
If f(x) is a continuous function defined on [a, b], then
$ \ \ \ \ \ \ \ \ \ \ \ \ \ m(b-a) \le \ \int_a^bf(x) dx \le \ M(b-a)$
where, M and m are maximum and minimum values
respectively of f(x) in [a, b].
Here, f(x) = 1 + e$^{-x^2}$ is continuous in [0,1],
Now, $0 < x < 1 \ \Rightarrow \ \ x^2 < x \ \Rightarrow \ \ e^{x^2} < e^x \ \ e^{-x^2} > e^{-x}$
Again, 0 < x < 1$\Rightarrow \ \,x^2 >0 \ \Rightarrow \\ e^{x^2} > e^0 \ \Rightarrow \ e^{-x^3} <1$ $\therefore \ \ \ \ \ \ \ \ \ \ \ e^{-x}< e^{-x^2} < 1, \forall \ x \in \ [0,1]$
$\Rightarrow \ \ \ \ \ \ 1+e^{-x} < 1+e^{-x^2} < 2, \forall x \in [0,1] $
$\Rightarrow \ \ \ \ \int_0^1(1+e^{-x}) dx < \int_0^1(1+e^{-x^2}) dx <\int_0^1 2 dx$
$\Rightarrow \ \ \ \ 2-\frac{1}{e} < \int_0^1 (1+e^{-x^2}) dx <2$