We have, tan9∘−tan27∘−tan63∘+tan81∘ =tan9∘+tan81∘−tan27∘−tan63∘ =tan9∘+tan(90∘−9∘)−tan27∘−tan(90∘−27∘) =tan9∘+cot9∘−(tan27∘+cot27∘)…(i)
Also, tan9∘+cot9∘=sin9∘cos9∘1=sin18∘2…(ii)
Similarly, tan27∘+cot27∘=sin54∘2=cos36∘2…(iii)
Using (ii) and (iii) in (i), we get tan9∘−tan27∘−tan63∘+tan81∘ =sin18∘2−cos36∘2 =5−12×4−5+12×4=4