Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $tan9^{\circ} - tan27^{\circ} - tan63^{\circ} + tan81^{\circ}$ is

Trigonometric Functions

Solution:

We have, $tan9^{\circ} - tan27^{\circ} - tan63^{\circ} + tan81^{\circ}$
$= tan9^{\circ} + tan81^{\circ} - tan27^{\circ} - tan63^{\circ}$
$= tan9^{\circ} + tan(90^{\circ} - 9^{\circ}) - tan27^{\circ} - tan(90^{\circ} - 27^{\circ})$
$= tan9^{\circ} + cot\, 9^{\circ} - (tan27^{\circ} + cot27^{\circ})\quad \ldots (i)$
Also, $tan9^{\circ}+cot9^{\circ}=\frac{1}{sin\,9^{\circ}\,cos\,9^{\circ}}=\frac{2}{sin\,18^{\circ}}\quad\ldots\left(ii\right)$
Similarly, $tan27^{\circ} + cot27^{\circ}=\frac{2}{sin\,54^{\circ}}=\frac{2}{cos\,36^{\circ}}\quad\ldots\left(iii\right)$
Using $\left(ii\right)$ and $\left(iii\right)$ in $\left(i\right)$, we get
$tan9^{\circ} - tan27^{\circ} - tan63^{\circ} + tan81^{\circ}$
$=\frac{2}{sin\,18^{\circ}}-\frac{2}{cos\,36^{\circ}}$
$=\frac{2 \times 4}{\sqrt{5}-1}-\frac{2 \times 4}{\sqrt{5}+1}=4$