Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of tan -1 √(a(a+b+c)/b c)+ tan -1 √(b(a+b+c)/c a)+ tan -1 √(c(a+b+c)/a b) is: (where a, b, c >0)
Q. The value of
tan
−
1
b
c
a
(
a
+
b
+
c
)
+
tan
−
1
c
a
b
(
a
+
b
+
c
)
+
tan
−
1
ab
c
(
a
+
b
+
c
)
is : (where
a
,
b
,
c
>
0
)
347
144
Inverse Trigonometric Functions
Report Error
A
4
π
B
2
π
C
π
D
0
Solution:
x
+
y
+
z
=
a
+
b
+
c
(
b
c
a
+
c
a
b
+
ab
c
)
=
a
+
b
+
c
(
ab
c
a
+
b
+
c
)
=
(
ab
c
)
1/2
(
a
+
b
+
c
)
3/2
x
yz
=
b
c
a
(
a
+
b
+
c
)
⋅
c
a
b
(
a
+
b
+
c
)
⋅
ab
c
(
a
+
b
+
c
)
=
(
ab
c
)
1/2
(
a
+
b
+
c
)
3/2
∴
x
+
y
+
z
=
x
yz
⇒
S
=
π
⇒
(C)