Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\tan ^{-1} \sqrt{\frac{a(a+b+c)}{b c}}+\tan ^{-1} \sqrt{\frac{b(a+b+c)}{c a}}+\tan ^{-1} \sqrt{\frac{c(a+b+c)}{a b}}$ is : (where $a, b, c >0$)

Inverse Trigonometric Functions

Solution:

image
$x+y+z=\sqrt{a+b+c}\left(\sqrt{\frac{a}{b c}}+\sqrt{\frac{b}{c a}}+\sqrt{\frac{c}{a b}}\right)=\sqrt{a+b+c}\left(\frac{a+b+c}{\sqrt{a b c}}\right)=\frac{(a+b+c)^{3 / 2}}{(a b c)^{1 / 2}} $
$x y z=\sqrt{\frac{a(a+b+c)}{b c}} \cdot \sqrt{\frac{b(a+b+c)}{c a}} \cdot \sqrt{\frac{c(a+b+c)}{a b}}=\frac{(a+b+c)^{3 / 2}}{(a b c)^{1 / 2}}$
$\therefore x+y+z=x y z \Rightarrow S=\pi \Rightarrow \text { (C) }$