Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫1e10 log exdx is equal to
Q. The value of
∫
1
e
10
l
o
g
e
x
d
x
is equal to
1331
195
KEAM
KEAM 2009
Integrals
Report Error
A
10
lo
g
e
(
10
e
)
B
l
o
g
e
10
e
10
e
−
1
C
l
o
g
e
10
e
10
e
D
(
10
e
)
lo
g
e
(
10
e
)
E
l
o
g
e
10
e
10
e
+
1
Solution:
Let
I
=
∫
1
e
10
l
o
g
e
x
d
x
Again, let
I
1
=
∫
10
l
o
g
e
x
d
x
⇒
I
1
=
x
.10
l
o
g
e
x
−
∫
x
.10
l
o
g
e
x
.
x
l
o
g
e
10
d
x
⇒
I
1
=
x
10
l
o
g
e
x
−
∫
10
l
o
g
e
x
lo
g
e
10
d
x
⇒
(
1
+
lo
g
e
10
)
I
1
=
x
10
l
o
g
e
x
⇒
I
1
=
1
+
l
o
g
e
10
x
.10
l
o
g
e
x
∴
I
=
[
1
+
l
o
g
e
10
x
.10
l
o
g
e
x
]
1
e
=
[
1
+
l
o
g
e
10
10
e
−
1
]
=
l
o
g
e
10
e
10
e
−
1