Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \int_{1}^{e}{{{10}^{{{\log }_{e}}x}}}dx $ is equal to

KEAMKEAM 2009Integrals

Solution:

Let $ I=\int_{1}^{e}{{{10}^{{{\log }_{e}}x}}dx} $ Again, let $ {{I}_{1}}=\int{{{10}^{{{\log }_{e}}x}}}dx $
$ \Rightarrow $ $ {{I}_{1}}=x{{.10}^{{{\log }_{e}}x}}-\int{x{{.10}^{{{\log }_{e}}x}}.\frac{{{\log }_{e}}10}{x}}dx $
$ \Rightarrow $ $ {{I}_{1}}=x{{10}^{{{\log }_{e}}x}}-\int{{{10}^{{{\log }_{e}}x}}{{\log }_{e}}10\,}dx $
$ \Rightarrow $ $ (1+{{\log }_{e}}10){{I}_{1}}=x{{10}^{{{\log }_{e}}x}} $
$ \Rightarrow $ $ {{I}_{1}}=\frac{x{{.10}^{{{\log }_{e}}x}}}{1+{{\log }_{e}}10} $
$ \therefore $ $ I=\left[ \frac{x{{.10}^{{{\log }_{e}}x}}}{1+{{\log }_{e}}10} \right]_{1}^{e} $
$=\left[ \frac{10e-1}{1+{{\log }_{e}}10} \right] $
$=\frac{10e-1}{{{\log }_{e}}10e} $