Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of integral ∫ ex((2 tan x/1+ tan x)+ cot 2(x+(π/4))) d x is equal to [Note: Where C is integration constant.]
Q. The value of integral
∫
e
x
(
1
+
t
a
n
x
2
t
a
n
x
+
cot
2
(
x
+
4
π
)
)
d
x
is equal to
[Note: Where C is integration constant.]
239
120
Integrals
Report Error
A
e
x
tan
(
4
π
−
x
)
+
C
B
e
x
tan
(
x
−
4
π
)
+
C
C
e
x
tan
(
4
3
π
−
x
)
+
C
D
e
x
tan
(
x
−
4
3
π
)
+
C
Solution:
I
=
∫
e
x
(
1
+
t
a
n
x
2
t
a
n
x
+
cot
2
(
2
π
+
x
−
4
π
)
)
d
x
=
∫
e
x
(
1
+
t
a
n
x
2
t
a
n
x
+
tan
2
(
x
−
4
π
)
)
d
x
=
∫
e
x
(
1
+
t
a
n
x
2
t
a
n
x
+
sec
2
(
(
x
−
4
π
)
−
1
)
)
d
x
=
∫
e
x
(
1
+
t
a
n
x
t
a
n
x
−
1
+
sec
2
(
x
−
4
π
)
)
d
x
=
∫
e
x
(
tan
(
x
−
4
π
)
+
sec
2
(
x
−
4
π
)
)
d
x
=
e
x
tan
(
x
−
4
π
)
+
C