Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of integral $\int e^x\left(\frac{2 \tan x}{1+\tan x}+\cot ^2\left(x+\frac{\pi}{4}\right)\right) d x$ is equal to
[Note: Where C is integration constant.]

Integrals

Solution:

$I=\int e^x\left(\frac{2 \tan x}{1+\tan x}+\cot ^2\left(\frac{\pi}{2}+x-\frac{\pi}{4}\right)\right) d x=\int e^x\left(\frac{2 \tan x}{1+\tan x}+\tan ^2\left(x-\frac{\pi}{4}\right)\right) d x $
$=\int e^x\left(\frac{2 \tan x}{1+\tan x}+\sec ^2\left(\left(x-\frac{\pi}{4}\right)-1\right)\right) d x=\int e^x\left(\frac{\tan x-1}{1+\tan x}+\sec ^2\left(x-\frac{\pi}{4}\right)\right) d x $
$=\int e^x\left(\tan \left(x-\frac{\pi}{4}\right)+\sec ^2\left(x-\frac{\pi}{4}\right)\right) d x=e^x \tan \left(x-\frac{\pi}{4}\right)+C$