Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle lim n arrow ∞((1/n)+(e1 / n/n)+(e2 / n/n)+ ldots+(e(n-1) / n/n)) is
Q. The value of
n
→
∞
lim
(
n
1
+
n
e
1/
n
+
n
e
2/
n
+
…
+
n
e
(
n
−
1
)
/
n
)
is
1590
214
Limits and Derivatives
Report Error
A
1
B
0
C
e-1
D
e+1
Solution:
n
→
∞
lim
[
n
1
+
n
e
1/
n
+
n
e
2/
n
+
…
+
n
e
(
n
−
1
)
/
n
]
=
n
→
∞
lim
[
n
1
+
e
1/
n
+
(
e
1/
n
)
2
+
…
+
(
e
1/
n
)
n
−
1
]
=
n
→
∞
lim
n
(
e
1/
n
−
1
)
1
⋅
[
(
e
1/
n
)
n
−
1
]
=
(
e
−
1
)
n
→
∞
lim
(
1/
n
e
1/
n
−
1
)
1
=
(
e
−
1
)
×
1
=
(
e
−
1
)