Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\displaystyle\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{e^{1 / n}}{n}+\frac{e^{2 / n}}{n}+\ldots+\frac{e^{(n-1) / n}}{n}\right)$ is

Limits and Derivatives

Solution:

$\displaystyle\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{e^{1 / n}}{n}+\frac{e^{2 / n}}{n}+\ldots+\frac{e^{(n-1) / n}}{n}\right]$
$=\displaystyle\lim _{n \rightarrow \infty}\left[\frac{1+e^{1 / n}+\left(e^{1 / n}\right)^{2}+\ldots+\left(e^{1 / n}\right)^{n-1}}{n}\right]$
$=\displaystyle\lim _{n \rightarrow \infty} \frac{1 \cdot\left[\left(e^{1 / n}\right)^{n}-1\right]}{n\left(e^{1 / n}-1\right)}$
$=(e-1) \displaystyle\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{e^{1 / n}-1}{1 / n}\right)}$
$=(e-1) \times 1=(e-1)$