Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The total number of local maxima and local minima of the function f(x)=((2-x)/π) cos (π x+3 π)+(1/π2) sin (π x+3 π), where 0 < x < 4 is equal to
Q. The total number of local maxima and local minima of the function
f
(
x
)
=
π
(
2
−
x
)
cos
(
π
x
+
3
π
)
+
π
2
1
sin
(
π
x
+
3
π
)
, where
0
<
x
<
4
is equal to
73
166
Application of Derivatives
Report Error
Answer:
2
Solution:
f
′
(
x
)
=
(
2
−
x
)
sin
(
π
x
)
∴
Local maximum at
x
=
1
and local minimum at
x
=
3
.