We have series 103+10⋅153⋅7+10⋅15⋅203⋅7⋅9+… =5×2!3+52⋅3!3⋅7+53⋅4!3⋅7⋅9+…
We know that, (1+x)n=1+nx+2!n(n−1)x2+3!n(n−1)(n−2)x3+…
Here comparing, 2!n(n−1)x2=5×2!3
and 3!n(n−1)(n−2)x3=52×3!3⋅7 n(n−1)x2=53…(i)
and n(n−1)(n−2)x3=2521…(iii) ⇒(n−2)x×53=2521 ⇒x=5(n−2)7
Put x=5(n−2)7 in Eq. (i), we get n(n−1)25(n−2)249=53 ⇒(n2−n)49=15(n2−4n+4) ⇒34n2+11n−60=0 ⇒n=−23 or n=1720 ∴x=57(−23−2)1=−52 ∴ Sum of series is =(1−52)2−3−1−53 =(35)3/2−58=3355−58