Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum to infinite terms of the series (3/10)+(3.7/10.15)+(3.7 .9/10.15 .20)+ ldots to ∞ is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The sum to infinite terms of the series $\frac{3}{10}+\frac{3.7}{10.15}+\frac{3.7 .9}{10.15 .20}+\ldots$ to $\infty$ is
TS EAMCET 2018
A
$\sqrt[4]{125}-1$
B
$\frac{5 \sqrt{5}}{3 \sqrt{3}}-\frac{8}{5}$
C
$\sqrt[3]{4}-\frac{4}{3}$
D
$\sqrt{\frac{5}{3}}-\frac{6}{5}$
Solution:
We have series
$ \frac{3}{10}+\frac{3 \cdot 7}{10 \cdot 15}+\frac{3 \cdot 7 \cdot 9}{10 \cdot 15 \cdot 20}+\ldots $
$= \frac{3}{5 \times 2 !}+\frac{3 \cdot 7}{5^{2} \cdot 3 !}+\frac{3 \cdot 7 \cdot 9}{5^{3} \cdot 4 !}+\ldots$
We know that,
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2 !} x^{2}+\frac{n(n-1)(n-2)}{3 !} x^{3}+\ldots$
Here comparing,
$\frac{n(n-1)}{2 !} x^{2}=\frac{3}{5 \times 2 !}$
and $ \frac{n(n-1)(n-2)}{3 !} x^{3} =\frac{3 \cdot 7}{5^{2} \times 3 !} $
$ n(n-1) x^{2}=\frac{3}{5} \,\,\,\,\,\dots(i)$
and $ n(n-1)(n-2) x^{3}=\frac{21}{25}\,\,\,\,\,\dots(iii)$
$\Rightarrow \, (n-2) x \times \frac{3}{5}=\frac{21}{25}$
$ \Rightarrow \,x=\frac{7}{5(n-2)}$
Put $x=\frac{7}{5(n-2)}$ in Eq. (i), we get
$ n(n-1) \frac{49}{25(n-2)^{2}}=\frac{3}{5} $
$ \Rightarrow \,\left(n^{2}-n\right) 49=15\left(n^{2}-4 n+4\right) $
$ \Rightarrow \, 34 n^{2}+ 11 n-60=0$
$ \Rightarrow \, n=-\frac{3}{2}$ or $n=\frac{20}{17} $
$ \therefore \, x=\frac{7}{5} \frac{1}{\left(-\frac{3}{2}-2\right)}=-\frac{2}{5} $
$ \therefore $ Sum of series is $=\left(1-\frac{2}{5}\right)^{\frac{-3}{2}}-1-\frac{3}{5} $
$=\left(\frac{5}{3}\right)^{3 / 2}-\frac{8}{5}=\frac{5 \sqrt{5}}{3 \sqrt{3}}-\frac{8}{5} $