Let x and y be two positive numbers. ∴ According to question, x+y=a (constant) ⇒y=a−x
Let z=x3+y3 z=x3+(a−x)3...(i)
On differentiating Eq. (i) w.r .t. 'x', we get dxdz=3x2+3(a−x)2(−1) =3[x2−(a−x)2] =3(x+a−x)(x−a+x) =3a(2x−a)...(ii)
For maximum or minimum, dxdz=0 ⇒3a(2x−a)=0(∵3a=0) ⇒2x−a=0 ⇒x=2a
On differentiating Eq. (ii) w.r.t 'x', we get dx2d2z=6a (positive) ∴dx2d2z>0 ∴ z has a minimum value at x=2a.
Therefore, the numbers are 2a and a−2a=2a.