Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of two positive numbers is given. If the sum of their cubes is minimum, then

KCETKCET 2012Application of Derivatives

Solution:

Let x and y be two positive numbers.
$\therefore $ According to question,
$x+y=a \quad$ (constant)
$\Rightarrow y=a-x$
Let $z = x^{3} + y^{3}$
$z = x^{3} + \left(a - x\right)^{3}\quad ... \left(i\right)$
On differentiating Eq. (i) w.r .t. 'x', we get
$\frac{dz}{dx} = 3x^{2}+3\left(a-x\right)^{2} \left(-1\right)$
$= 3\left[x^{2} -\left(a- x\right)^{2}\right]$
$= 3 \left(x + a - x\right) \left(x - a+ x\right)$
$= 3a \left(2x - a\right)\quad ... \left(ii\right)$
For maximum or minimum, $\frac{dz}{dx} = 0$
$\Rightarrow 3a\left(2x- a\right)= 0\quad\left(\because 3a\ne0\right)$
$\Rightarrow 2x-a=0$
$\Rightarrow x = \frac{a}{2}$
On differentiating Eq. (ii) w.r.t 'x', we get
$\frac{d^{2}z}{dx^{2}} = 6a \quad$ (positive)
$\therefore \frac{d^{2}z}{dx^{2}}>0$
$\therefore $ z has a minimum value at $x = \frac{a}{2}$.
Therefore, the numbers are $\frac{a}{2}$ and $a-\frac{a}{2} = \frac{a}{2}.$