Let 1,r,r2 be the three numbers in G.P. ∴1+r+r2=αS. Also 1+r2+r4=S2 ⇒(1+r+r2)(1−r+r2)=S2
Also (1+r+r2)2=α2S2
Dividing, we get 1+r+r21−r+r2=α21
or α2−α2r+α2r2=1+r+r2 r2(α2−1)−(α2+1)r+α2−1=0
Since r is real and ∴(α2+1)2−4(α2−1)2≥0 [α2+1+2(α2−1)][α2+1−2(α2−1)]≥0 ⇒(3α2−1)(3−α2)≥0 ⇒3α2−1≥0,3−α2≥0
or 3α2−1≤0,3−α2 ⇒α2≥31,α2≤3
or α2≤31,α2≥3 not possible ⇒31≤α2≤3