Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of the squares of three distinct real numbers which are in G.P. is $S^2$. If their sum is $\alpha \,S$ then

Sequences and Series

Solution:

Let $1, r, r^{2} $ be the three numbers in $G.P.$
$ \therefore 1+r+r^{2}= \alpha S$. Also $1+r^{2}+r^{4} = S^{2} $
$ \Rightarrow \left(1+r+r^{2}\right)\left(1-r+r^{2}\right) = S^{2} $
Also $\left(1+r+r^{2}\right)^{2}= \alpha^{2} S^{2}$
Dividing, we get $\frac{1-r+r^{2}}{1+r+r^{2}} = \frac{1}{\alpha^{2}}$
or $\alpha^{2} -\alpha^{2}r +\alpha^{2}r^{2} = 1+r+r^{2}$
$ r^{2} \left(\alpha^{2}-1\right) -\left(\alpha^{2}+1\right)r+\alpha^{2}-1= 0 $
Since $r$ is real and
$ \therefore \left(\alpha^{2}+1\right)^{2}-4\left(\alpha^{2}-1\right)^{2} \ge0 $
$\left[\alpha^{2}+1+2\left(\alpha^{2}-1\right)\right]\left[\alpha^{2}+1-2\left(\alpha^{2}-1\right)\right]\ge0$
$ \Rightarrow \left(3\alpha^{2}-1\right)\left(3-\alpha^{2}\right)\ge0$
$\Rightarrow 3\alpha^{2}-1\ge0, 3-\alpha^{2}\ge0 $
or $3\alpha^{2} -1\le0, 3-\alpha^{2}$
$ \Rightarrow \alpha^{2} \ge \frac{1}{3}, \alpha^{2}\le3$
or $\alpha^{2}\le\frac{1}{3}, \alpha^{2}\ge3$ not possible
$ \Rightarrow \frac{1}{3}\le \alpha^{2} \le3$