Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution set of x∈ (- π , π ) for the inequality sin 2 x + 1≤ cos x+2sin x is
Q. The solution set of
x
∈
(
−
π
,
π
)
for the inequality
s
in
2
x
+
1
≤
cos
x
+
2
s
in
x
is
1294
210
NTA Abhyas
NTA Abhyas 2020
Report Error
A
x
∈
[
0
,
6
π
]
B
x
∈
[
6
π
,
6
5
π
]
∪
{
0
}
C
x
∈
[
−
6
π
,
6
5
π
]
D
x
∈
[
−
2
π
,
2
π
]
Solution:
2
s
in
x
cos
x
+
1
−
cos
x
−
2
s
in
x
≤
0
(
2
s
in
x
−
1
)
(
cos
x
−
1
)
≤
0
Case I:
cos
x
=
1
⇒
x
=
0
Case II: otherwise
cos
x
<
1
⇒
2
s
in
x
−
1
≥
0
⇒
s
in
x
≥
2
1
⇒
x
∈
[
6
π
,
6
5
π
]
Hence, from case I and case II,
x
∈
[
6
π
,
6
5
π
]
∪
{
0
}